
AFRL-ML-WP-TR-1998-4188 

LASER/MATERIALS INTERACTION STUDIES FOR 
ENHANCED SENSITIVITY OF LASER ULTRASONIC 
SYSTEMS 

MICHAEL J. EHRLICH 
JAMES B. SPICER 
TODD W. MURRAY 
DAVID H. HURLEY 

JOHNS HOPKINS UNIVERSITY 
DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING 
102 MARYLAND HALL 
3400 NORTH CHARLES STREET 
BALTIMORE, MD 21218 

DATED: MAY 1998 

FINAL REPORT FOR APRIL 1995 THROUGH SEPTEMBER 1998 

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED 

MATERIALS AND MANUFACTURING DIRECTORATE 
AIR FORCE RESEARCH LABORATORY 
AIR FORCE MATERIEL COMMAND 
WRIGHT-PATTERSON AFB, OH 45433-7817 



NOTICE 

WHEN GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA ARE USED 
FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY 
GOVERNMENT-RELATED PROCUREMENT, THE UNITED STATES GOVERNMENT 
INCURS NO RESPONSIBILITY OR ANY OBLIGATION WHATSOEVER. THE FACT THAT 
THE GOVERNMENT MAY HAVE FORMULATED OR IN ANY WAY SUPPLIED THE SAID 
DRAWINGS, SPECIFICATIONS, OR OTHER DATA, IS NOT TO BE REGARDED BY 
IMPLICATION OR OTHERWISE IN ANY MANNER CONSTRUED, AS LICENSING THE 
HOLDER OR ANY OTHER PERSON OR CORPORATION, OR AS CONVEYING ANY 
RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED 
INVENTION THAT MAY IN ANY WAY BE RELATED THERETO. 

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION 
SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC, 
INCLUDING FOREIGN NATIONS. 

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION. 

CURTIS J." FIEDLER, Project Engineer 
Nondestructive Evaluations Branch 
Metals, Ceramics & NDE Division 

^ &U>Uf 
TOBEY^I. CÖRDELL, Chief 
Nondestructive Evaluations Branch 
Metals, Ceramics & NDE Division 

t-^g^y. 
GERALD J. PpTRAK, Acting Asst Chief 
Metals, Cersfetfics & NDE Division 
Materials & Manufacturing Directorate 

IF YOUR ADDRESS HAS CHANGED, IF YOU WISH TO BE REMOVED FROM OUR 
MAILING LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR 
ORGANIZATION, PLEASE NOTIFY, AFRL/MLLP, WRIGHT-PATTERSON AFB OH 
45433-7817 AT 59819 TO HELP US MAINTAIN A CURRENT MAILING LIST. 

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS 
REQUIRED BY SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR 
NOTICE ON A SPECIFIC DOCUMENT. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing 
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information 
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01881, Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

MAY 1998 

3. REPORT TYPE AND DATES COVERED 

FINAL REPORT: APRIL 1995 - SEP 1998 
4. TITLE AND SUBTITLE 

LASER/MATERIALS INTERACTION STUDIES FOR ENHANCED SENSITIVITY 
OF LASER ULTRASONIC SYSTEMS 

6. AUTHORIS) 

MICHAEL J. EHRLICH, JAMES B. SPICER, TODD W. MURRAY, 
DAVID H. HURLEY 

5. FUNDING NUMBERS 

C    F33615-95-C-5223 
PE  62102 
PR  2418 
TA  40 
WU 18 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

JOHNS HOPKINS UNIVERSITY 
DEPT OF MATERIALS SCIENCE & ENGINEERING 
102 MARYLAND HALL 
3400 NORTH CHARLES STREET 
BALTIMORE. MD 21218  

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

MATERIALS AND MANUFACTURING DIRECTORATE 
AIR FORCE RESEARCH LABORATORY 
AIR FORCE MATERIEL COMMAND 
WRIGHT-PATTERSON AFB, OH 45433-7750 
POC: DR. CURTIS J. FIEDLER. AFRL/MLLP. (937^1255-9797 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

AFRL-ML-WP-TR-1998-4188 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
12b. DISTRIBUTION CODE 

13. ABSTRACT maximum 200 words) 

Under this program, laser ultrasonic wave generation and propagation in composite materials was studied to improve the 
sensitivity of laser ultrasonic inspection of composite materials. The obvious advantages of laser-based systems aside, 
compared to conventional counterparts, the sensitivity of these systems must be improved to yield comparable inspection 
capabilities. To address sensitivity issues, those factors that are critical to improving the generation efficiency and propagation 
of laser ultrasound in composite materials were investigated to provide directions for advancing the performance of laser 
ultrasonics systems. The directions that were identified and pursued included the following: optimization of laser pulse 
duration for maximum ultrasonic energy transmission, determination of the effects of composite anisotropy and homogeneity 
on ultrasonic transmission, modification of the laser source to improve detectability using signal processing and investigation 
of laser ablation damage mechanisms. Owing to inhomogeneity and anisotropy, composite materials behave differently than 
do traditional aircraft materials such as aluminum. This behavior was assessed to identify the frequency dependant effects on 
various ultrasonic modes in composites. The effects of pulse duration on ultrasonic generation deficiency were determined; 
the ability to deliver more energy at the frequencies of interest, that are supported by the composite, greatly improves the 
transmission of ultrasound through composites. These accomplishments of the program were broadly applicable to laser 
ultrasonic inspection of composites and directly indicated methods to improve laser ultrasonic system sensitivity. 

14. SUBJECT TERMS 

ULTRASONICS, LASER-BASED ULTRASONICS 
15. NUMBER OF PAGES 

346 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF 
ABSTRACT 

SAR 
Standard Form 298 (Rev. 2-89) [EG) 
Prescribed by ANSI Std. 239.18 
Designed using Perform Pro, WHS/DIOR, Oct 94 



Table of Contents 

Objective 1 
Introduction 1 
Summaryof Results 3 

Appendix A "An Investigation of the Anisotrophic and Heterogeneous Nature of 
Laser Generated Ultrasound in Carbon -Fiber-Reinforced Epoxy and Single Crystal 
Materials." 
Appendix B "Laser Interactions with Materials: Optimizing the Laser Source for 
the Generation of Acoustic Waves In Laser Ultrasonic Applications." 

XIX 



R&D FINAL REPORT: 
LASERMATERIALS INTERACTION STUDIES FOR 

ENHANCED SENSITIVITY OF LASER ULTRASONIC SYSTEMS 

Contract No. F33615-95-C-5223 

April 1998 

Data Item No. A002 

Objective 

The goal of this program was to develop methods to enhance the sensitivity of laser based 
ultrasonic systems, specifically by studying and addressing the laser/material interaction 
during generation of ultrasound in materials of interest to the Air Force. 

Introduction 

The work performed under this program is aimed at enhancing the aircraft inspection 
capabilities of the Air Force using rapid, non-contact, laser based methods. Areas 
investigated include optimization of the laser source for efficient ultrasound generation, 
modulation of the laser source for improved signal-to-noise ratio, and modeling of laser 
based ultrasound generation and propagation in anisotropic and heterogenous materials. 

This work has direct benefit in both the civilian and military sectors. One of the greatest 
challenges facing the United States today is maintenance of its aging aircraft 
infrastructure. Civilian and military aircraft are being flown well beyond their design 
lifetime, and often under adverse conditions. As these fleets are operated in this manner, 
it becomes imperative to assess the structural integrity of these aircraft and to inspect 
repaired or reworked areas. Owing to the large number and physical size of aircraft in 
service, this becomes an extremely difficult task using conventional technology. 

Also, new aircraft designs are utilizing composite materials to ever greater extents. 
Unlike the aluminum alloys in older aircraft, these composite materials may be highly 
anisotropic and heterogeneous. The defect rate for these new composite structures is 
significant because of the relative infancy of composite materials processing technology. 
For this reason, most composite structures are inspected immediately after manufacture. 
However, owing to material anisotropy and heterogeneity, and the fact that many new 
composite parts are manufactured with intricate contours, inspection is rarely 
straightforward and the results are often difficult to interpret. 

Laser-based ultrasonic inspection techniques hold promise for overcoming several of the 
difficulties associated with inspecting both aging and advanced aircraft.  Laser based 
systems for generation and detection of ultrasound have been investigated widely in 



academic and industrial laboratories around the world. These promising techniques offer 
noncontact and remote means for ultrasonic inspection of materials and structures. Since 
light beams from a laser are all that must come in "contact" with the surface of an object 
under inspection, prospects for high scan rates and inspection of surfaces with complex 
contours add to the attractiveness of this technology. In addition to the potential 
advantages for inspection of manufactured materials and structures in service, laser 
generation and detection of ultrasound is also being targeted at process control 
applications where measurements can be made on hot materials or those under high 
pressure or in otherwise hostile environments, so long as optical access to the material 
can be gained through an inspection port. Also, since ultrasonic transduction with laser 
beams can be done in the absence of couplants and without being subjected to the 
mechanical resonances associated with most contact ultrasonic transducers, laser based 
methods are capable of sensing ultrasonic vibrations with extreme fidelity, opening 
possibilities for data interpretation beyond simple time-of-flight and attenuation 
measurements currently made with conventional piezoelectric ultrasonic transducers. 

Unfortunately, laser based ultrasonic systems suffer from considerably poorer sensitivity 
than their conventional counterparts. The factors affecting performance of the receiver 
systems are well understood; however, less well understood are those parameters 
associated with the mechanism for laser generation of the ultrasound. Put simply, the 
signal-to-noise ratio for a laser ultrasonic system is directly proportional to the power of 
the receiving laser, the ultrasonic surface displacement, and inversely proportional to the 
total system bandwidth. The last two of these factors, surface displacement and system 
bandwidth, pertain almost exclusively to the laser generation side of the system. The 
ultrasonic signal generated by a laser source depends on the thermal, optical, and elastic 
properties of the specimen and on the characteristics of the laser source. For a given 
materials system, the laser source parameters, including temporal profile, spatial profile, 
energy, and wavelength, can be chosen such that the signal-to-noise ratio of the laser 
ultrasonic system is maximized. 

The work performed under this contract was aimed at gaining a better understanding of 
the laser generation process in an effort to determine what techniques could be employed 
to enhance the overall laser ultrasonic system sensitivity. Efforts were directed in four 
separate areas: 

1. Modeling laser generation of ultrasound in the ablative regime. 
2. Spatial Modulation of the incident laser light. 
3. Temporal modulation of the incident laser light. 
4. Modeling of laser generated ultrasound in transversely isotropic materials. 

Details and results for each of these efforts are given in the attached Ph.D. dissertations, 
Appendix A and Appendix B which completely describe all work performed under this 
contract. These dissertations were written by the students which this contract supported. 
A brief summary of the results is presented below. 



Summary of Results 

1. It is well known that the amplitude of the laser generated ultrasonic waves can be 
significantly enhanced by increasing the energy in the generation laser pulse such that 
surface ablation occurs. The amplitude of ultrasonic waves generated in the ablative 
regime is directly related to the surface vaporization process. Under this program, the 
laser vaporization process in vacuum was modeled using an implicit finite difference 
technique. First, the surface pressure resulting from vaporization is calculated. This 
surface pressure physically generates the ultrasonic waves, and in the model is used as 
a source term to calculate the ultrasonic wave displacement. Model based 
calculations were compared to experimentally measured surface displacements in 
aluminum specimens, showing good agreement for the case where absorption of light 
in the vapor can be neglected. This model can be used to predict the onset of 
ablation, as well as the expected surface displacement and ultrasonic signal shape for 
a given laser irradiance. One of the interesting findings of this work is that strong 
vaporization occurs only during the time of illumination. Experimentally, it has been 
found that for highly ablative generation of ultrasound in air, pressure is exerted on 
the material surface for a significant time after the laser pulse ends.    This was 
previously assumed to be a result of the vaporization process continuing for a 
substantial time after illumination. However, this effect was not observed in vacuum, 
and indicates that strong vaporization occurs only during the laser pulse, and that the 
surface cools quite rapidly when the pulse finishes. The step function time 
dependence of the forcing function observed in high irradiance laser ablation 
experiments is apparently due to the presence of a backing gas, and not to surface 
vaporization. 

2. A novel technique for increasing laser ultrasonic system sensitivity through spatial 
modulation of the incident laser pulse was developed under this program. The 
method uses a transmission mask to generate chirped surface waves. The laser source 
is extended in space allowing for a large amount of laser energy to be utilized in the 
generation process without surface ablation. The received ultrasonic signal is 
digitally processed using a matched filter, which leads to compression of the signal in 
time. This technique allows for temporal resolution to be maintained while surface 
damage is avoided. 

3. A linear systems approach for determination of laser pulse length effects on 
ultrasound generation was developed. This allows for the calculation of the resultant 
ultrasonic wave displacements given an arbitrary laser pulse temporal profile, 
provided an experimentally determined reference signal is available. For materials 
exhibiting strong surface absorption, it was found that there exists a temporal pulse 
length which optimizes the laser generated signal amplitude while avoiding surface 
damage. Also, pulse length effects on two composite materials supplied by the Air 
Force were evaluated. 



4.   A comprehensive model of laser generated ultrasound in carbon fiber composites was 
developed. Both the nature of the source and the nature of the material were 
addressed to construct the appropriate model. Fiber composite materials are 
inherently elastically anisotropic, and for certain experimental geometries and 
ultrasonic frequencies, the composite must be considered heterogeneous. The pulsed 
laser source generates ultrasound with a broad frequency spectrum. This broad 
spectrum further complicates issues related to the composite's 
homogeneous/heterogeneous character. The approach taken was to investigate under 
what experimental conditions would a theory that accounted only for elastic 
anisotropy and not heterogeneity sufficiently describe the resulting waveform. A 
transversely isotropic material was chosen in order to simplify the analysis while 
keeping the salient features of elastic anisotropy. Both a line source and a point 
source representation of laser-generated ultrasound in materials exhibiting transverse 
isotropy was developed. Experimental validation of the theory was performed using 
two transversely isotropic materials, single crystal zinc and unidirectional carbon 
epoxy. For zinc, the experimentally obtained epicentral and surface wave 
displacements agree well with theoretical predictions. The carbon epoxy sample 
exhibits homogeneous behavior when the wave vector is perpendicular to the fiber 
direction. When the wave vector is aligned with the fiber direction, the wave form 
appears to be influenced by the inhomogeneous nature of the composite. 
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ABSTRACT 

Laser generated ultrasound in carbon epoxy composites provides an ultrasonic 

signature which is difficult to interpret owing to the elastic anisotropic and 

inhomogeneous nature of these materials. In this manuscript, both a line source and a 

point source representation of laser-generated ultrasound in materials exhibiting 

transverse isotropy is presented. The bounding plane of the half space is assumed to 

be the plane of isotropy. Neglecting thermal diffusion, it is shown that in the limit of 

strong optical absorption, the buried line source is equivalent to applying a shear 

stress dipole at the bounding surface. A formal solution is found using double 

(Fourier-Laplace) transforms. The Cagniard-de Hoop technique is used to 

analytically invert the transform for the epicentral case as well as the surface wave 

case. Solutions for a sub-surface source and for observation points that are off the 

epicentral axis are obtained numerically. 

Experimental validation of the theory is performed using single crystal zinc and a 

unidirectional carbon epoxy sample. For the Carbon fiber epoxy sample, the plane of 

isotropy was found to be perpendicular to the fiber direction. For zinc, the 

experimentally obtained epicentral and surface wave displacements agree well with 

theoretical predictions. The carbon epoxy sample exhibits homogeneous behavior 

when the wave vector is perpendicular to the fiber direction. When the wave vector is 

aligned with the fiber direction, the wave form appears to be influenced by the 

inhomogeneous nature of the composite. 
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CHAPTER 1 

Ultrasonic techniques as probes for characterizing material properties have been 

used successfully since the Second World War. Ultrasonic testing was first used for 

locating material flaws in plates, forgings, and welds. Since its genesis, ultrasonic 

testing has lent itself to an ever-widening array of applications.   These applications 

include characterization of porosity distribution in ceramics, evaluation of 

microstructural properties, such as grain size in metal, and determination of the stress 

distribution in load bearing structures. 

There is a number of ways to produce ultrasound in a material. Traditionally, 

ultrasound has been generated by means of a piezoelectric transducer. A disc shaped 

piezoelectric material, like lead zirconate titanate, changes its dimensions in response 

to the application of a voltage across its faces. The ultrasonic energy in the 

transducer is then coupled into the material of interest via a coupling fluid. The 

primary advantages of piezoelectric transducers are their sensitivity and their ability 

to generate extremely narrow bandwidth signals. Among the disadvantages of 

piezoelectric transducers are that they required a couplant, they must be in contact or 

near contact with the sample, and the transducer must conform to the geometry of the 

sample's surface. 

With the advent of pulsed lasers in the mid 1960s, a new way of generating 

ultrasound emerged, namely, the generation of ultrasound by irradiating a specimen 

with a short pulse from a high intensity laser. When a pulsed laser beam is incident 

on a sample, the material absorbs a small portion of the energy of the incident pulse, 
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while the remaining energy is reflected or scattered from the sample's surface. The 

portion of the incident energy that is absorbed gives rise to rapid, localized heating of 

the sample. This rapid heating in turn generates ultrasound that propagates 

throughout the material. The primary advantages of laser ultrasound over more 

conventional methods can be summarized as follows. Since light is being used to 

transduce the ultrasound, the specimen being examined is not mechanically coupled 

to the transducer. As a result, a laser can generate ultrasound in specimens with 

complicated geometries and can remotely generate ultrasound in specimens that are 

in hazardous environments. In addition, pulsed lasers can generate ultrasound with 

an extremely large bandwidth. 

With its advantages over contact ultrasound, laser ultrasound is being applied to 

an increasing variety of materials. These materials range from the traditional 

structural materials like polycrystalline steel to more exotic materials used in the 

aerospace industry, like carbon epoxy composites. To a large extent, the successful 

application of laser ultrasound to this range of materials rests in the researcher's 

ability to correctly predict the temporal and spatial evolution of the displacements 

resulting from pulsed laser irradiation. With this information, the researcher is then 

able to ascertain material properties, such as grain size, temperature, porosity, crystal 

orientation, etc. Theories that assume homogeneity and elastic isotropy work well for 

untextured polycrystalline materials that have grain sizes that are small compared to 

the wavelength of the interrogating ultrasonic wave. However, materials that must be 

considered inhomogeneous and or elastically anisotropic, for example epoxy 

composites, behave in a markedly different fashion than their isotropic homogeneous 
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counterparts. The need to predict correctly the ultrasonic disturbance in materials 

such as carbon fiber epoxy requires the refinement of theories that assume 

homogeneity and elastic isotropy. 

(1.1) LITERATURE REVIEW 

In order to understand the motivation for the following presentation it is 

necessary to briefly review the existing literature pertaining to laser ultrasonics. The 

generation of high frequency ultrasonic pulses by absorption of electromagnetic 

radiation was first demonstrated by White [1] in 1963. Later White [2] used a Q- 

switched ruby laser to produce Rayleigh surface waves in piezoelectric and non- 

piezoelectric materials. The first work to give a quantitative scientific basis to pulsed 

laser ultrasonics was that of Scruby et al. [3]. In this work, a point source model was 

presented that show good correlation between experiment and theory. In this model, 

the thermoelastic source was reported to be equivalent to a surface shear stress dipole. 

The development of the model put forth by Scruby, et al. runs parallel to the 

development by Lamb [4] in his original treatment of transient waves in an elastic 

half space. Later, Rose [5] gave a systematic derivation for a point-source 

representation for laser generated ultrasound.   In this presentation, Rose showed that 

by neglecting the effects of heat conduction, the laser source can be approximated by 

a surface center of expansion (SCOE). In addition, Rose demonstrated that the 

(SCOE) is equivalent to the shear stress dipole source proposed by Scruby et al. [3]. 

These early attempts at theoretically studying the problem of laser generated 

ultrasound neglected the effects of heat conduction and sub-surface optical 
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absorption. As a result, there remained certain features in the displacement 

waveform, i.e. the longitudinal precursor spike, which were not accounted for by 

these theories. Lyamshev and Chelnokov [6] included the effect of both optical 

absorption and thermal conduction. Their results were analytical in nature and hence, 

confined to addressing certain limiting cases. As a consequence, they did not make 

mention of the longitudinal precursor spike. Doyle [7] showed that the precursor 

spike, in the epicentral waveform resulted from thermal diffusion into the material. 

Doyle distributed point centers of expansion below the surface to model the action of 

thermal diffusion. The resulting waveform predicted the precursor pulse and was in 

agreement with existing experimental results. Later, Telschow and Conant [8] more 

fully addressed the problem of optical absorption by using a previous development by 

Sve and Miklowitz [9] to model the exponential absorption of the laser energy. The 

results of this development predicted the existence of a precursor spike and agreed 

well with experimental results in ceramics. It is interesting to note that unlike the 

previous work in this area, Telschow and Conant [8] represented the epicentral 

displacement with a summation of symmetric and asymmetric plate modes. 

The discussion so far has been limited to the study of laser ultrasound in 

isotropic continua. Perhaps Geophysics was the first field of science to recognize the 

need to study the effects of anisotropy and inhomogeneity on transient elastic 

phenomenon. In 1977 a paper by Bamford and Crampin [10], a discussion was given 

with regard to the elastic anisotropic nature of a thin layer of the earth's upper 

mantle.   Later, Martynov and Mikhailenko [11] presented numerical modeling of the 

propagation of elastic waves in an anisotropic and inhomogeneous half-space.   The 
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basic question they considered is Lamb's problem in a vertically inhomogeneous 

half-space. In 1983, Crampin et al. [12] presented a comprehensive classification of 

seismic anisotropy. In this classification scheme, Crampin categorizes elastic 

anisotropy into inherent and extrinsic anisotropy. Inherent anisotropy refers to 

anisotropy found in homogeneous materials, while extrinsic anisotropy originates 

from inhomogeneities. 

The effects of inherent anisotropy, or crystal anisotropy, has been a subject of 

mathematical interest since 1949 when Stoneley [13] studied the propagation of 

Rayleigh surface waves in certain single crystal systems. In particular Stoneley 

analyzed three specific cases, surface waves propagating in the [0 0 1] plane of cubic 

crystals along the [10 0] and [110] directions, and in the basal plane of hexagonal 

crystals. Royer and Dieulesaint [14] extended the work of Stoneley to include the 

analysis of Rayleigh wave propagation in orthorhombic and tetragonal systems. In 

their paper, Royer and Dieulesaint demonstrated that the decay rate of the Rayleigh 

wave disturbance varies strongly as a function of the anisotropy factor. The analysis 

by Stoneley [13] and Royer and Dieulesaint [14] considered the disturbance to have 

planer phase fronts. Although a plane wave analysis gives the researcher a great 

amount of insight into the physical principles of the problem, it assumes that a finite 

source is separated from an observer by an infinite distance or that the generation 

source is infinite in extent. In certain instances, a plane wave analysis is a reasonable 

assumption, while in other instances, the finite geometry of the source must be 

considered in order to gain a better understanding of the underlying physical 

principles. In 1963, Kraut [15] extended the work of Lamb [4] by considering a 
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transversely isotropic elastic half space subjected to a source of finite extent. In this 

paper, Kraut used the Cagniard-de Hoop method [16-17] to study the resulting 

displacements in the crystal Beryl. Later in 1970, a book written by Musgrave [18], 

entitled Crystal Acoustics, detailed the mechanics of elastic wave propagation in a 

variety of single crystals systems. Other researchers [19-22] have further developed 

the work by Kraut [15] and Musgrave [18]. Mourad et al. [21] used the Cagniard-de 

Hoop method to numerically obtain the solutions to Lamb's problem in an 

anisotropic half-space. In their paper, Mourad et al. assumed that the laser source 

could be modeled as a shear stress dipole applied at the bounding surface. In 

addition, Weaver et al. [22] have studied the elastodynamic response of a thick 

transversely isotropic plate to a normal point source applied at the bounding surface. 

Of particular interest is the work by Payton [23], who has treated a general class of 

problems for crystals that exhibit transverse isotropy. Payton furnished a detailed 

analysis of the solution and solution technique for a variety of transient problems in 

bounded and semi-bounded solids. In addition, Payton gave an explicit set of 

conditions, related to the elastic parameters of the material, that predict the existence 

of inflection points on the slowness curve. 

An interest in extrinsic anisotropy outside the field of the Geological Sciences 

was stimulated by the advent of carbon fiber epoxy composites and a need to 

characterize their material properties. Traditionally, ultrasonic methods that assumed 

elastic isotropy were used for determining material properties and could not be 

directly applied to composites. Thus, researchers in the field of ultrasonic material 

characterization were lead to investigate the effects of inhomogeneity. The early 
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work by Achenbach [24], on wave propagation in fiber-reinforced composites 

assumed that the scale on which the composite could be viewed as inhomogeneous 

was very much smaller that the wavelength of the interrogating ultrasound. 

Therefore, for a range of ultrasonic frequencies, the composite could be viewed as an 

anisotropic, homogeneous material. This apparent anisotropy induced by 

inhomogeneities, i.e. fibers, is best illustrated when considering a unidirectional 

carbon fiber composite. For unidirectional fiber composites, the fibers are ideally 

packed with a hexagonal symmetry. This type of ideal symmetry has lead 

researchers [25,26] to model a unidirectional fiber composite as transversely 

isotropic. In addition to investigating the artifacts of apparent anisotropy in fiber 

epoxy composites, other researchers [27,28] have considered the attenuative and 

dispersive effects of viscoelasticity and inhomogeneities. Data et al. [27] utilized the 

stiffness method to study dispersive wave propagation in a laminated anisotropic 

plate, while Mai and Lih [28], modeled the effects of viscoelasticity and scattering of 

ultrasonic energy off fiber inhomogeneities by assuming that the stiffness constants, 

Cjj, were complex. 

Now the question naturally arises, should the composite be viewed as elastically 

anisotropic, inhomogeneous, or both? Before answering this question, the researcher 

must consider the ultrasonic generation method, the fiber lay-up, fiber orientation 

relative to the surfaces, the source and receiver location, and the detection method. 

In this work, only pulsed laser generation is considered. Since the pulse duration of 

the laser source is roughly 10 ns, a large range of wavelengths is produce, which 

might require that the composite's inhomogeneous character be recognized. In order 
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to simplify the problem as much as possible while still retaining the salient features 

of laser generated ultrasound in fiber composites, the fiber epoxy samples that were 

examined were all unidirectional. The fibers in the test samples were oriented either 

parallel or perpendicular to the free surface, which further leads to questions 

regarding the conditions in which the fiber-reinforced epoxy composite can be 

considered homogeneous. 

(1.2) OVERVIEW OF PRESENTATION 

The objective of this work is to gain a better understanding of the response of 

carbon fiber-reinforced epoxy composites to pulsed laser irradiation. As mentioned 

previously, epoxy composites are heterogeneous. The effects of these heterogeneities 

will be the focus of Chapter 2. In this chapter, the source specification will be 

considered as a function of the beam diameter, pulse duration, and optical frequency 

of the illumination beam. In addition, the problem of scattering off inhomogeneities 

is addressed.   This chapter is concluded by considering the conditions in which a 

unidirectional carbon fiber epoxy composite can be considered a transversely 

isotropic elastic continuum. 

Chapter 3 discusses the slowness curves and wave front curves for the various 

crystals that exhibit transverse isotropy. In Chapter 4, the solutions for a line source 

and a point source in a transversely isotropic medium are considered. Only same 

surface and epicentral displacements are considered. These special cases lend 

themselves to an analytic solution, which affords a detailed analysis of the solution 
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procedure. This explicit analysis of the solution procedure will aid in the 

development presented in chapter 5. 

Solutions of a more complicated nature in a transversely isotropic half-space are 

examined in Chapter 5. Off-epicentral displacements for a surface line source as well 

as epicentral displacements for a buried line source are considered.   Knowledge of 

displacements at positions that are off the symmetry axis are required in order to 

construct the solution to problems where the source has a finite lateral extent. 

Consideration of a buried source is a first step in addressing the effects of optical 

inhomogeneity. 

The laser generation and detection system is the subject of Chapter 6. Included in 

this chapter is the specification of the material samples examined. 

In Chapter 7, experimental results are compared with theoretical results for 

samples of Zinc and unidirectional carbon fiber epoxy composite. Zinc is used as a 

prototype to ensure that the theory correctly predicts the effects of elastic anisotropy. 

The presentation will conclude by discussing any discrepancies between theory and 

experiment and addressing the direction of future work. 
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CHAPTER 2 

Modeling laser ultrasonics in carbon fiber epoxy composites involves 

understanding the optical interactions with the sample, as well as the thermal and 

mechanical response of the sample. This chapter addresses the physical processes 

involved in laser generated ultrasound as they happen in chronological order. 

First, a portion of the optical energy incident on the sample is absorbed by the 

sample. Second, the absorbed optical energy is transferred into thermal energy. 

Third, a portion of the thermal energy, which is very localized in time and space, is 

transferred into high frequency acoustic energy. Thus, a rough outline of this chapter 

could be stated as follows, the optical problem, the thermal problem, and the acoustic 

problem. The heterogeneous and anisotropic nature of the carbon fiber composite 

can affect all three problems. 

(2.1) THE OPTICAL PROBLEM 

The optical problem can be divided into two parts. The first part is concerned 

with understanding what physical processes are involved when light is absorbed by 

matter. The second part involves determining the spatial distribution of the absorbed 

energy. 

The interaction of an electromagnetic wave with a material results in two 

phenomena, which are 1) reflection, and 2) transmission. Photons that are specularly 

scattered from a material interface without losing energy to the material are referred 

to as reflected photons. Reflection is a result of photons being absorbed by valence 
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electrons and being reradiated at the same frequency. In metals at sub-ultraviolet 

frequencies, the interaction is with quasi-free electrons, while in dielectrics, the 

interaction is with strongly bound electrons. 

Transmission can be divided into two categories. Photons can interact with 

valence electrons as they pass through a material causing their path to bend in 

response to a gradient in the refractive index (refraction), or photons can be absorbed 

by the material having their energy transformed into non-optical forms of energy. 

Refraction without absorption is realizable only in dielectrics, while the 

transmogrification of optical energy can happen in dielectrics as well as conductors. 

A further classification involves the division of the mechanisms involved in 

the absorption of optical energy into two broad classes: mechanisms that are linear 

with the electric field and mechanisms that are non-linear with the electric field. 

Linear mechanisms, such as the piezoelectric effect, produce acoustic energy with the 

same frequency as the incident light. Acoustic energy is generated by field linear 

mechanisms when the incident radiation has a frequency less than the Debye 

frequency (©D~1013 Hz). Since the optical frequency being considered is always 

greater than the Debye frequency, the absorption mechanisms that are linear with 

electric field can be neglected. Therefore, the absorption of optical energy is due to 

non-linear quadratic effects, such as electrostriction, magnetostriction, and the 

thermooptical effect. 

Before continuing, the relative contributions of the field quadratic effects 

need to be considered. The ensuing discussion follows that of Gusev and Karabutov 
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[29]. Consider a plane electromagnetic wave incident on an isotropic dielectric. The 

spatial density of forces acting on the dielectric is given by [30], 

5X:        5X; 
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(2.1) 

where p is the pressure in the material, s and n are the permittivity and magnetic 

permeability, c is the speed of light, p is the density, T is the temperature, E and H 

are the electric and magnetic fields, eijk is the permutation symbol and the angled 

brackets represent a time average over a period much greater than the period of the 

electromagnetic wave. The first term on the right hand side of Eq. 2.1 represents the 

force produced by the photo-thermal effect. The second and third terms in Eq. 2.1 

are present if the material is heterogeneous on a length scale proportional to the 

wavelength of the optical disturbance. The terms in the square brackets represent the 

electrostrictive and magnetostrictive effect. The Abraham-Lorentz force is expressed 

by the last term on the right side of Eq. 2.1. This force is a result of a charged 

particle interacting with it's own radiation field. 

For diamagnetic and paramagnetic materials, magnetostrictive effect are not 

significant at optical frequencies [29]. The relative contribution of the Abraham- 

Lorentz force and the electrostriction force can be expressed by the following ratio, 
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£r^. (2.2) 

where fa and f^ represent the Abraham-Lorentz and electrostriction force 

respectively, a is a characteristic length such as the beam diameter, and CD is the 

frequency of the excited acoustic disturbance. Thus, for a spot size on the order of 1 

cm, the Abraham-Lorentz force can be neglected for acoustic disturbances below 1 x 

1010 Hz. It can be shown [29], that for most cases, the electrostriction (termed 

photostriction at optical frequencies) effect becomes significant relative to the photo- 

thermal effect in transparent media (absorption depth > 1 cm) and at high ultrasonic 

frequencies. The exceptions to this rule are possible when there exists a substantial 

time delay (At ~ 1 us) between absorption of the photon and thermalization of the 

excited electron. The excited valence electron is delocalized, or stripped from its 

parent atoms, resulting in a change in the interaction energy between the parent 

atoms. This change in interaction energy gives rise to a non-thermal change in 

density. Non-thermal laser generation of ultrasound has been reported by a number 

of researchers [30,31,32]. Dixon, etal. [32], demonstrated that non-thermal 

generation in single crystal silicon is significant for fluences below ~ 0.2 J cm"2. 

Dharamsi and Hassam [31], give a set of conditions and a list of candidate materials 

for photostrictive acoustic generation. From their paper it can be inferred that 

polycrystalline and/or amorphous material would not exhibit photostrictive effects, 

due to the fact that the excited electron would quickly drift out of the localized region 

where the band structure lends itself to photostrictive generation. 
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The focus of this presentation is pulsed Nd:YAG generation in 

polycrystalline-carbon-fiber epoxies. Using the above discussion, and noting typical 

values for the pulse duration, beam diameter, and the absorption depth (x=10 ns, a=l 

cm, a=l cm), it can be shown that the dominant mechanisms in the absorption of 

light by a carbon epoxy composite are represented by 

5X: OX; 
£ 

8n 
V J 

(EJEj)l  gL(HJHj) 
5x; 8TI 

(2.3) 

Graphite epoxy can be considered heterogeneous on length scales corresponding to 

the spacing between fibers (10 urn). Thus, for laser systems operating in the visible 

or near visible range, only the photo-thermal mechanism needs to be considered. 

Determination of the spatial distribution of the absorbed energy involves 

understanding the influence that the laser parameters have on the absorption of 

optical energy in the constitutive materials, graphite and epoxy. The most important 

parameter influencing the absorption characteristics of graphite epoxy is the optical 

wavelength of the generation beam. The amount of optical energy absorbed and 

whether it is absorbed in the epoxy or in the fiber is a function of optical wavelength. 

Thus, to investigate the nature of pulsed laser interaction in graphite epoxy in a 

general sense, the optical frequency of the generation beam should be left arbitrary. 

In Fig. 2.1, a schematic of a plane electromagnetic wave of arbitrary frequency 

incident on a partially absorbing optically isotropic material is shown. The 
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propagation direction is perpendicular to the interface and hence, there is no need to 

distinguish between fields that are parallel and perpendicular to the plane of 

incidence. The incident electric field propagating in the x3 direction and polarized 

along xls is represented as 

E<1)=x1E<1)ei(k")x3-fi)t) (2.4) 

where EJ^is the amplitude of the wave, co is the frequency. The wavenumber is 

expressed as 

k« = n
(1)o> .(2-5) 
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fx, 
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Fig. 2.1. Coordinate system used in discussing reflection at the surface of a 
conductor. E(1) represents the incident wave, E(2) represents the transmitted wave and 
E(3) represents the reflected wave. 
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where n(1) is the index of refraction in medium one, and c is the speed of light. The 

reflected and transmitted electric fields have die form, 

Ef)=x1E
(

0
2)ei(k^-c,t), 

(2.6) 

where 

i42W2)+iß(2\ 

a(2)=G) 

ß(2)=G) 

-1I/2 

-1I/2 

(2.7) 

In Eq. 2.1, |i(2), £(2), and d® represent the frequency dependent, permeability, 

permittivity, and the conductivity in medium 2. The wavevector in medium 2 is 

complex and hence the amplitude of the electromagnetic wave is damped 

exponentially as it travels in medium 2. The wave amplitude is attenuated by a factor 

of 1/e as it travels a distance x3 =l/ß. This is generally written as 8 and is referred to 

as the skin depth. The boundary conditions giving the equality of the tangential 

components of E and H at the plane x3=0 leads to the following expressions for the 

reflectivity and transmissivity, 
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Equation 2.8 demonstrates that if the product A,ß(2)» 1, R ~ 1. Good conductors 

approach this limit when the optical frequency is less than the plasma frequency. For 

polished metals irradiated by visible light, the reflectivity can be greater than 90%. 

In contrast, Xß(2)« 1 for most ceramics and polymers in the visible portion of the 

spectrum. As a result, polymers and ceramics only absorbed weakly in the visible 

region of the spectrum. 

When considering the amplitude of a photothermally generated acoustic 

disturbance, the spatial extent is as important as the amount of energy absorbed. Let 

generation in a conductor using a visible laser source serve as an example. While 

only a small percentage of the incident light is absorbed, its spatial extent is confined 

to a skin depth, 8-10 ran. The localized nature of the absorbed energy leads to large 

thermal gradients and hence large acoustic amplitudes. In comparison, a poor 

conductor such as epoxy, confines the absorbed energy to a skin depth, 8 ~ 10 mm. 

The relatively large spatial extent of the absorbed energy leads to small temperature 

gradients and small acoustic amplitudes. 

First consider the variation of the product Xß(2) with wavelength for graphite. 

Graphite consist of molecular sheets of carbon atoms. Within the plane of the 
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molecular sheets, there are three covalent bonds and one delocalized metallic bond. 

The sheets are bound together by Van der Waals forces. The delocalized bond gives 

rise to metallic-like character for electronic properties in the plane of the sheets. 

Thus, >iß(2)» 1 for polycrystalline graphite fibers at frequencies below the plasma 

frequency. At frequencies above the plasma frequency, the skin depth of the material 

relative to the optical wavelength increases substantially. In Table 2.1 a list of the 

skin depths for single crystal graphite at various commercially available laser 

wavelengths is given. Graphite is birefrengent, and hence, the index of refraction and 

the skin depth depend on the polarization direction relative to the materials 

crystallographic axes. Electromagnetic waves polarized parallel and perpendicular to 

the optic axis are termed ordinary and extraordinary respectively. Table 2.1 shows 

that the skin depth for both the ordinary and extraordinary rays is on the order of 10- 

100 nm in the visible and near IR portion of the spectrum. 

Table 2.1. Skin depth versus wavelength for graphite. Extraordinary is denoted by 
(e) and ordinary is denoted by (o) [33]. 

WAVELENGTH (|jM) POTENTIAL LASER 
SYSTEM 

ABSORPTION DEPTH 
(NM) 

0.2638 (l/4Nd:YAG) 15.8 (o) 
0.3542 (1/3 Nd:YAG) 41.4(o), 81.6(e) 
0.5391 (1/2 Nd:YAG) 64.1 (o) 
0.6880 (Ruby) 60.5 (o) 
1.069 (Nd:YAG) 82.2 (o) 
10.64 (C02) 5.6xl07 (e) 

It should be noted that graphite does not exhibit metallic character for 10.6 urn 

radiation that is polarized perpendicular to the optic axis. 
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In contrast to graphite, epoxies are poor conductors and do not exhibit 

metallic character. Epoxies are a family of thermosetting polymer resins with 

excellent mechanical, dimensional stability, adhesive properties, and heat resistance. 

The binding force, which holds the individual atoms in the polymer resin together, is 

covalent. Table 2.2 gives the location of the absorption peaks for two commercially 

available epoxies. Epoxies, like most polymers, absorb weakly in the visible region 

and have strong absorption peaks in the ultraviolet and infrared portions of the 

spectrum. Unlike graphite, absorption in polymers is not associated with 

contributions from delocalized electrons. Absorption in the ultraviolet is associated 

with electronic transitions between molecular orbitals while absorption in the infrared 

is associated with vibrational, translational and rotational motion of the molecules. 

Experimental results demonstrating the combined absorption spectrum for graphite 

epoxy composites were presented by Dubois et cd. [34]. 

Table 2.2. Location of the absorption peaks for various epoxies [35,36]. Absorption 
depths are not given since the cell length for spectral data was not given. 

LOCATION OF 
SPECTRA 
PEAK 

TRADE NAME OR 
CHEMICAL NAME 

PERCENT 
TRANSMISSION 

211    (nm) chalcone epoxy 12 
3.50   (um) Den® 438 46 
7.63   (um) Den® 438 4 
8.06  (um) Den® 438 2 
10.99 (um) Den® 438 34 

Their data showed that the graphite epoxy laminates absorb strongly in the infrared 

region of the spectrum from 5.5 urn to 10 um radiation. These results illustrate that 
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the absorption characteristics of the graphite epoxy in the infrared are dominated by 

the epoxy. 

Owing to the fact that graphite and epoxy have vastly different optical 

properties, the way in which optical energy is absorbed by the composite is a strong 

function of the ffiumination wavelength. For instance, pulsed C02 generation would 

result in the majority of the absorbed optical energy being deposited in the epoxy 

rather than the fibers. Conversely, illumination with a laser system emitting visible 

radiation would result in the absorbed energy being deposited in the fibers. 

For pulsed Nd: YAG generation, tables 2.1 and 2.2 demonstrate that the 

graphite fibers absorb the majority of the transmitted energy. Figure 2.3 illustrates 

the notable features of Nd:YAG pulsed irradiation in graphite epoxy. 

jß 

Laser Source 
\ 

\        N     Optical 
v x    Absorption. \ 

\ 
\ 

Carbon Fiber 
Epoxy Composite 

Carbon Fiber Epoxy 

Fig. 2.2. Schematic of Pulsed NdrYAG laser interaction with graphite epoxy. 
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For a large illumination area relative to the fiber spacing, the optical energy is 

absorbed over a network of fibers with a complicated composite geometry. Thus, 

solving the optical problem exactly with its complex system of boundary conditions 

would be a formidable task. As an alternative, two special cases can be considered 

which greatly simplify the optical problem. The first case assumes that all the optical 

energy is absorbed at a point located on the surface of the material. This could be 

realized by bringing the first layer of fibers to the samples surface and then focusing 

the generation beam to a small spot. The second case assumes that all the energy is 

deposited at a point buried beneath a thin layer of epoxy. Considering a buried 

source is perhaps the first step in modeling inhomogeneity due to variations in optical 

properties. 

(2.2) THERMAL PROBLEM 

The assumption that all the optical energy is absorbed at a point greatly 

simplifies the thermal problem as it did in the optical problem. The thermal problem 

involves predicting the spatial and temporal distribution of the temperature field. 

Immediately after the absorption of the optical energy, thermal energy is conducted 

into a thermally heterogeneous anisotropic material. To make matters more 

complicated; the transient nature of the problem couples the temperature field to the 

strain field via the strain rate. The thermal problem starts by considering the fully 

coupled equations of thermoelasticity, 
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Qjklul,kj - BijTji - Pui,tt » 
(2.9) 

kijT,ii-Q = pCTn-pTBij8ij;t , 

where Cijk] is the elastic stiffness tensor, U; are the displacements, B;j is the thermal 

pressure coefficient, T is the temperature, p is the density, kjj is the thermal 

conductivity, Q is the heat generation term, C is the specific heat at constant stain, 

and Ejj is the strain tensor. Hetnarski [37] and Nowacki [38] considered the influence 

of coupling between the strain and the temperature fields. Their results showed that 

for the general problem of a concentrated heat source in an infinite thermoelastic 

space, the coupling between the strain and temperature fields is negligible. If the 

strain rate contribution to the temperature is neglected, the heat conduction equation 

can be written as 

k8Tnj-pCT,t = -Q(x1,x2,X3ft) . (2.10) 

For a buried laser point source, Q can be represented as follows: 

Q = q08(x1)8(x2)8(x3-a)8(t), 

q0=E(l-R) , 

where q0 is the absorbed heat, E is the energy of the laser pulse, and R is the 

reflectivity of the sample surface. Before considering the solution to the heat 
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conduction equation, Eq. 2.10, the conditions under which thermal diffusion can be 

neglected are examined. Rose [5], states that a point-source representation for the 

radiation from a localized source is adequate for X>>/, where X is the ultrasonic 

wavelength and / is the largest characteristic length relating to the source region. 

Ready [39] has shown that the source is effectively localized within a region, 0 < / < 

(D+(4kt)1/2, where © is the laser beam radius, k is the coefficient of thermal 

conductivity and t is the time interval of interest. Considering laser generation in 

graphite, it can be shown [5] that a point-source representation is a fair assumption 

for a frequency/spot-size product that is less than 1000 MHz-um. Thus, for a laser 

pulse with a 10 ns pulse duration and a spot size of 20 urn, it is reasonable to neglect 

the effects of thermal diffusion. The temperature distribution in the absence of 

thermal diffusion is represented as 

T = T0o(Xl)o(x2)8(x3-a)H(t), 

°"pC ' 

As a result of neglecting thermal diffusion, the thermally anisotropic and 

heterogeneous nature of the problem need not be considered. 
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(2.3) THE ELASTIC PROBLEM 

In a similar manner to the optical and thermal problem, the heterogeneous and 

anisotropic elastic character of carbon fiber epoxy is addressed in this section. First, 

the effects of heterogeneities are examined by considering a plane shear wave 

interacting with an infinite cylinder. This simple model affords an estimate of the 

dependence of the scattered power on the ultrasonic wavelength. Next the 

anisotropic elastic character of carbon fiber epoxy is discussed. This chapter is 

concluded by presenting a stiffness tensor representative of the symmetry imposed by 

a unidirectional fiber arrangement. 

Diffraction of elastic waves is a subject that has been addressed by several 

authors, [40-42]. In this section, one of the simplest examples of elastic wave 

diffraction is treated. Consider a harmonic shear wave polarized parallel to the axis 

of an infinite cylinder as shown in Fig. 2.4. The incident wave propagates in the 

matrix along the xraxis and is given by 

c(i) 

Ul
(i) = u(

2° = 0 ,       uf = u0 exp[i(k(1)X! - ©t)] ,       k(1) = — , (2.13) 
G) 

where U30 is the displacement of the incident wave and c(1) is the phase velocity in the 

material surrounding the cylinder. Since the incident wave is polarized parallel to the 

cylinder axis (SH), the scattered wave is also a SH wave. 
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Propagation 
direction 

Fig. 2.3. Incident shear wave polarized parallel to cylinder axis. 

It should be noted, since the motion is antiplane shear, the solution of this problem 

lends itself to the eigenfunction expansion method. If the problem involved shear 

and longitudinal waves, the integral equation technique would be used rather than 

eigenfunction expansion method. The displacement of the wave after interaction 

with the cylinder, Ujd), satisfies the wave equation in cylindrical coordinates, 

<d2 Id     Id 
■+ + 

,2 ^ 

dr2    Tdt   r2562 \af=- 1 a2u^d) 

c, at2 
(2.14) 
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The solutions of Eq. 2.14 are of the form, 

i4d)=R(r)0(G)e-i<Dt . (2.15) 

Substitution of Eq. 2.15 into Eq. 2.14 and separating variables gives 

r2^R+r^ + (k2r2_n2)R = 0 ^0+n20 = o (216) 

dr2       dr    v ; Ö62 

Noting that © must be periodic with period 27i, the solution to this problem is 

u<d) =u0 i(AnHi(k(1)r) + BnH2(k(1)r))cos(ne)e-i0,t , (2.17) 
n=0 

where H,,1 and H„2 are the first and second Hankel functions of order n. The 

displacement Ujd), is composed of a scattered wave and a refracted wave (r<a). The 

functions H„2 are the appropriate solutions for the outwardly propagating scattered 

wave. The domain of the refracted wave includes r=0, thus, Jn are the appropriate 

solutions for the refracted wave. The solution now can be written as 

43 



27 

u«> =uis>+u«, 

u<s) =u0 2 AnH^(k(1)r)cos(ne)e-i<at , (2.18) 
n=0 

u?> =-u0 I CnJn(k(2)r)cos(ne)e-iCDt 

n=0 

where u^s) andu^r) represent the scattered wave and the refracted wave respectively. 

The wavevector in the fiber is defined as 

k(2)=J)"' (2-19) 

where c(2) is the phase velocity in the fiber. The amplitudes, A„ and Bn, are obtained 

by satisfying the boundary conditions. The boundary conditions require the 

continuity of the displacements and stresses at the surface of the cylinder, 

u«+u<s)=u«,       H
(1>-!(u«+uis)W2)^,     atr = a. (2.20) 

or dr 

Since the scattered and refracted waves are in cylindrical coordinates, it is necessary 

to express U30 in cylindrical coordinates. Using the series expansion, 

e(ikrcos6)=2sni
nJn(kr)cos(ne), 

n=0 (2.21) 
e0 = 1,     S; = 2     for     n = 1,2,...   , 
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Uj0 can be expressed in cylindrical coordinates as, 

-ik(1)rcos8„icot c u?)=U(r,9)ei<Bt=u0e- 

u?)=u0SEni
nJn(Ä)cos(ne>i(Bt. 

n=0 

(2.22) 

Substituting Eqs.2.18 and Eq.2.22 into Eqs.2.20 gives 

A. = (-iX /D.) L'Vj,(k»a)^-„«k» SÄjB(k(2»a) 
or or 

C„=(-i'So/D.)n(1)k(" or or 
(2.23) 

r(2). ri n.0). 
Dn=U^k^(kWa)gJn(k   a)-^k^dR^k  a)Jn(k^a) . 

or or 

The effect that the fiber has on the acoustic wave can be gauged by considering the 

scattered energy relative to the energy of the incident wave. The power flux per unit 

length along the cylinder is given by 

P = ixklnk-^-ds , (2.24) 
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where C is the contour along the circumference of the cylinder. The time mean value 

of the power flux for harmonic waves is given by 

<P) = f(Pk)nkds, (2.25) 
c 

where the angled brackets represent the time average over one period. The average 

power flux per unit area is given by 

ta=tue^f     u^e*, (2.26) 

<Pk) = -4iö>(tklÜi-tkiÜ1), 

where quantities with an overbar represent the spatial part of the stress and the 

displacement, and an asterisk denotes the complex conjugate of a quantity. The 

average power flux per unit area of the incident wave can be written as 

V^) = -U^km\n0\2 . (2.27) 

The average power flux per unit area of the scattered wave can be written as 
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' 4 n=0 m=0 Ot 

AXÄ!£)HL(k<-»r) 
at 

(2.28) 

cosnBcosmG 

At large distances from the fiber (R»A,), the Hankel functions take on the following 

form, 

Hi(kR) ~ 4(2/(rfÄ))»»^-"""«"2'» , 

fir 

(2.29) 

Using Eqs. 2.25,2.27,2.28,and 2.29, an expression representing the scattering cross 

section of the fiber can be written as 

Y=7%=]|j-(2AoA;+iAnA: 
Pi (i) 

(2.30) 

Before continuing, the acoustic impedance mismatch between the fiber and the 

matrix must be specified. If the matrix and the fiber have the same elastic constants, 

then from Eqs. 2.23, the amplitude of the scattered wave is zero and the acoustic 

disturbance passes through the fiber unaffected. In contrast if u,(2) -» oo or u(2) -» 0, 

Eqs. 2.23 would reduce to the case of a rigid cylinder or a cylindrical cavity 

respectively.  In order to keep the salient features of elastic wave scattering by a 
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cylindrical obstacle while considerably simplifying the analysis, the shear modulus of 

the fiber is assumed to be zero (u(2)=0). 

A plot of scattered power versus wavenumber parameter is plotted in Fig. 2.4. The 

power per unit length of the cylinder is normalized with respect to the power in the 

incident beam whose width is equal to the diameter of the cylinder. 

y/2a 

Fig. 2.4. A plot of scattered power versus wavenumber parameter. 

For wavelengths that are small compared to the cylinder radius, the power in the 

scattered beam is twice the power contained in the incident beam. This is due to the 

fact that the scattered wave contains forward and backward propagation components. 

The backward propagating component is the reflected wave and the forward 

propagation component destructively interferes with the undisturbed portion of the 

incident wave. The forward-scattered wave is referred to as the shadow-forming 
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wave. Figure 2.4 demonstrates that if the acoustic wavelength is large relative to the 

cylinder radius, then the wave passes by the cavity essentially unaffected. The 

relevant experimental parameters in this case are the laser pulse duration and the 

acoustic velocity in the material. For a 10 ns pulse duration and an acoustic velocity 

ranging from 1-10 mm/us, the smallest acoustic wavelength ranges from 10-100 

/um. Thus, for a fiber spacing of 10 urn, only the highest frequencies will suffer 

scattering losses. 

The emphasis of the remaining portion of this presentation involves the effect 

of elastic anisotropy on the character of laser generated ultrasound in graphite epoxy. 

Scattering effects will be neglected by replacing the graphite epoxy by an idealized 

homogeneous elastically anisotropic material. In the limit of homogeneity, this 

idealized material will have a crystal symmetry analogue related to the way the fibers 

are arranged in the composite. This is best illustrated by considering a unidirectional 

graphite fiber epoxy composite illustrated in Fig. 2.5. 

Fibers 
arranged 
to exhibit 
hexagonal 
symmetry 

Ultrasonic Wave 

V1 
V2 

V1»V2 

Fig. 2.5. Ideal carbon fiber arrangement in epoxy composite. 
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From mechanical considerations, the fibers are packed as tightly as possible. Ideally, 

the highest volume fraction of fibers to epoxy is obtained when the fibers are 

arranged with hexagonal symmetry as shown in Fig. 2.5. Since the fibers are assumed 

to have hexagonal symmetry, the stiffness tensor is that of a hexagonal crystal, 

C;: = 

cll c12 C13 • • 

Cl2 Cll c13 • • 

C13 C13 C33 • • 

"44 

"44 

"66. 

(2.31) 

where the matrix notation or reduced notation has been used to represent the stiffness 

tensor. The equations of motion for a laser source in a transversely isotropic material 

can now be written explicitly as 

ßuin +8u1>22 +u133-uljTT +(ß-5)u2)i2 +KU313 =Sj , 

(ß - SKl2 + 6U2,11 + ßU2,22 + U2,33 - U2,tx + ^3,23 = S2 . 

«»143 +KU2,23 +U3,11 +U3,22 + <*u3,33 -U3,xr = S3  , 

S, =B11T08'(x1)8(x2)5(x3-a)H(t) , 

S2=B11T08(x1)5'(x2)8(x3-a)H(t) , 

S3=B33T08(Xl)8(x2)8'(x3-a)H(t) , 

(2.32) 

where a, ß, K,8 and T are defined as 
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a = ^3i,ß = Bl)K = (1 + aß_Y)i/256 = I(p_Ci2/c44) 
"44 

y=l+aß- 

"44 

SlL + i 
VC44       J 

,T = t "44 
1/2 (2.33) 

KP J 

The ratios of the elastic constants introduced in Eq. 2.33 are convenient groupings 

that are latter used to determine the character of the slowness curve and wave-front 

curve. The construction and analysis of these curves is the subject of Chapter 3. The 

statement of the problem is completed by stating the traction free boundary 

conditions, 

x13 = —-+—L = 0 , 
Sxx    3x3 

"-23 Sx2    9x3 

(2.34) 

l33 = (K-1) 
5UJ    do-2 

Al      3*2 J 
+ a- 

5u3 

ox. 
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CHAPTER 3 

The solution of for an unbounded isotropic material in the presence of a 

spherically symmetric cavity source, shown in Fig. 3.1, has been thoroughly treated 

by a number of authors [40-42]. When the source is spherically symmetric, elastic 

isotropy greatly simplifies the solution for two reasons. First, isotropy leads to 

spherical phase fronts which in turn leads to a solution that is independent of angle, cp 

and <|).   Second, shear and longitudinal motions are not coupled in isotropic 

materials; thus, the solution procedure is greatly aided by the use of displacement 

potentials. In contrast, an elastically anisotropic material does not have spherical 

phase fronts and shear and longitudinal motions are coupled. Before seeking the 

solution to Eqs. 2.33, subjected to the boundary conditions given in Eq. 2.35, it is 

prudent to investigate the differences in behavior between an isotropic and a 

anisotropic full-space subjected to an acoustic disturbance. These differences are 

most conveniently exemplified by considering the phase front and wave front shapes. 

(3.1) NORMAL CURVES FOR SOME TRANSVERSELY ISOTROPIC SYSTEMS 
(TWO SPACE DIMENSIONS) 

Consider a time-harmonic plane wave propagating in a transversely isotropic 

elastic solid. The equation of motion, given explicitly in Eq. 2.33, can be written in 

index form as 
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ciJMUyg--UijT.=0 , (3.1) 

where Cpa = cm / c^, and x is defined in Eq. 2.34. The displacement wave has the 

following form, 

Ui=Adie 
to(v»p-^ 

(3.2) 

x,l   Ö 
'////////&//////,,,      i  i 

JH1 
s^JL—, 

Xj 

X, 

Fig. 3.1. Spherical cavity of radius a subjected to internal pressure. 

where © is the frequency, A is the amplitude, qp are the components of the 

components of the slowness vector, and v*445 is given as 

.(2) _   Jc2323 

If     P 
(3.3) 
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Substitution of Eq. 3.2 into Eq. 3.1 gives 

( Cijkiq^-Sa,) dk =0 , (3.4) 

where 8± is the Kronecker delta. For a nontrivial solution the determinant of the 

coefficients of (^ must vanish, which gives 

Cijkiqjqi -8^1 = 0. (3.5) 

The slowness vector may be rewritten as 

k;     P; 
qj=^ = ^-, (3-6) 

G)        V 

where v is the phase velocity, and Pj is the direction cosine of the wavevector, k. 

Using Eq. 3.6, Eq. 3.5 can be expressed as 

rik~v 5ik = 0>     rik=CijuPjP1 • (3-7) 

The constants F± are known as the Christoffel stiffnesses. From the properties of the 

stiffness tensor, Cijkl, it follows that the eigenvalues of T& are real and positive and 
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their corresponding eigenvectors are orthonormal. The three eigenvalues of T^ 

represent the phase velocities and are termed cl9 c2, and c3. For the general 

anisotropic case, the phase velocities depend on the components of pj (i.e. the 

propagation direction). However, for an isotropic material, there are only two unique 

phase velocities, which are also independent of propagation direction. 

A polar plot of the phase velocities as a function of propagation angle is 

called a normal curve or slowness curve. For isotropic materials, the normal curves 

in two dimensions are circular, while the normal curves for anisotropic materials are 

non-circular. Consider the slowness curve for a material that is transversely 

isotropic. Let the coordinate axes coincide with the crystallographic axes. Using the 

form of the stiffness tensor given by Eq. 2.32, Eq. 3.7 reduces to 

}pl + 8<p? +pl)-v2 £ap£ +YP3 ti2 +P2)+ß(pi2 +vif +(« + 1)p 

"(ß+l)(p2+p2y+v4]=0, 

2   2 

(3.8) 

where a, ß, 8, y, and K were defined in Eq. 2.34. The direction cosines in Eq. 3.8 can 

be written as 

PJ =vrcos(q>),     p2 =vrsin(<p),     p3=vs, (3.9) 
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where <p is to be identified with the azimuthal angle shown in Fig. 3.1. Using Eq. 

3.9, Eq. 3.8 can be rewritten as 

[s2 +8r-l2] [as4 +ys2r2 + ßr4 -(a + l) s2 

-(j3+l)r2+l]=0. 
(3.10) 

Notice that Eq. 3.10 does not depend <p, a consequence of transverse isotropy. In 

order to graphically display the normal curve it is convenient to use polar coordinates 

defined by 

s = Rcos© ,     r = Rsin© (3.11) 

Equation 3.10 now can be written as 

A(0)R
4
-B(©)R

2
+1 = O , 

A(0) = acos40 + ycos20sin20 + ßsin40 , 

B(0)=(a+l)cos20 + (ß + l)sin20 . 

(3.12) 

Solving for R gives 

R±(0)= 
B(0)+VB(0)

2
-4A(0) 

2A(0) 

-1I/2 

(3.13) 
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It is evident from the preceding development that the shape of the normal curve is a 

function of the elastic constants. The distinguishing features of the normal curves are 

the number and location of the inflection points. According to Payton [23], five 

classifications exist for transversely isotropic continua for which the normal curve is 

free of double points ( B(0)2-4A(0)=O). The five classes are represented graphically 

in Figs. 1-5. 

180 

21 cr 330 

Fig. 3.2. Class I normal curve. (ct=0.64, ß=0.64, y=1.2) 
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Fig. 3.3. Class II normal curve. (a=0.64, ß=0.25, y=0.42) 
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90 

180 

120^-  
2 

1.5 

-^60 

150^ 

_Oß\ 

\30 

21<K 

24(N»~~__ -^300 

?330 

270 

Fig. 3.4 Class III normal curve. (a=0.25, ß=0.64, y=0.42) 

Fig. 3.5. Class IV normal curve. (a=0.64, (3=0.64,7=-1.0) 
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Fig. 3.6. Class V normal curve. (a=4, ß=6, y=20) 
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The R+ branch of the class I normal curves has no inflection points. Class II and III 

normal curves have two inflection points on the R+ branch, intersecting the xx and x2 

axis respectively. The R+ branch of the class IV and V normal curves has four 

inflection points. The significance of the location of the inflection points will 

become apparent when considering the shape of the wave front. 

(3.2) WAVE-FRONT CURVES FOR SOME TRANSVERSELY ISOTROPIC 
SYSTEMS (TWO SPACE DIMENSIONS) 

Energy flows in a direction normal to the wave front and thus, it is the wave 

front that is of experimental interest. For isotropic material, the energy flux vector 

and the normal to the slowness curve coincide, while for an anisotropic material, the 

two vectors may or may not coincide depending on the propagation direction. Many 

authors have developed methods for constructing wave-front curve and the energy 

flux vector [23,41,43]. It suffices for this presentation to briefly describe the method 

given by Duff [43] for construction of the wave front. This method consists of 

mapping a point on the normal curve to a point on the wave-front curve. Consider a 

segment of the normal curve denoted N, shown in Fig. 3.7. 
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Fig. 3.7. Mapping normal curve to wave front curve. 

Let n be a tangent line to N at P, and let L be a line normal to n. Point Q is located at 

the intersection of line P and L, and R is a point on line L. The distance from the 

origin to R is the inverse of the distance from the origin to Q. Point R is identified 

with a point on the wave front. A proof of this construction is given by Payton [23]. 

Wave-front curves corresponding to the normal curves given earlier are shown in 

Figs. 3.8-3.12. 
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120^~ "To""- -OB0 
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27 '0 
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Fig. 3.8. Class I normal curve. (a=0.64, ß=0.64,7=1.2) 
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Fig. 3.9. Class II normal curve. (a=0.64, ß=0.25, y=0.42) 
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Fig. 3.10. Class III normal curve. (a=0.25, ß=0.64, y=0.42) 
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Fig. 3.11. Class IV normal curve. (a=0.64, ß=0.64,7=-1.0) 
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Fig. 3.12. Class V normal curve. (cc=4, ß=6, y=20) 

The triangular portions or cusp in the wave front, lacunas, corresponding to 

the R+ branch, are artifacts of the normal curve inflection points. Much work has 

been devoted to understanding the consequences of the cuspidal portions of the wave 

fronts in anisotropic materials [23,44]. One of the more obvious consequences is that 

more than two wave arrivals exist in directions that intersect triangular portions of the 

wave front. For example, consider a material with a class two normal curve. An 

observer located along the x3 axis will experience 3 wave arrivals. The first arrival 

corresponds to the R. branch of the slowness curve and the second and third arrivals 

correspond to the R+ branch of the slowness curve. Now consider a material with a 

class three normal curve. An observer along the x3 axis experiences only two 

arrivals, which is the case had the material been elastically isotropic. Thus, the 

observation direction in combination with the elastic constants dictate the behavior of 

the acoustic disturbance. 
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CHAPTER 4 

This chapter starts by developing a set of boundary conditions, which are 

equivalent to a thermoelastic point-source located at the bounding surface of a 

transversely isotropic 2-dimensional half-space. Since the inhomogeneous source 

term appears in the boundary conditions, implementing an equivalent set of boundary 

conditions is very convenient analytically. Theoretical expressions representing the 

out of plane displacements for waves propagation along the free surface, and waves 

propagation along the axis of material symmetry are presented. It is shown that for 

the epicentral case, the form of the solution depends strongly on the nature of the 

material anisotropy. The free surface and epicentral cases lend themselves to an 

analytic solution, which affords a detailed analysis of the solution procedure. The 

analysis presented in this chapter aids in the solution of problems of a more 

complicated nature presented in chapter 5. 

(4.1) EQUIVALENT BOUNDARY CONDITIONS 

In order to correctly evaluate the elastic boundary conditions, Rose [5] 

considers the center of expansion to be buried some distance below the free surface. 

The source is then brought to the surface where it is shown to be equivalent to a shear 

stress dipole applied at the bounding surface. For an anisotropic half space, the 

procedure presented by Rose [5], is long and cumbersome owing to the fact that the 

shear and longitudinal deformations cannot be uncoupled. 
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As an alternative to considering a buried point-source, a method of images, 

Nowacki [38], will be used to aid in the development of a set of boundary conditions 

that are equivalent to a laser line-source located at the bounding surface. To 

understand the method of images, consider an infinite elastic medium. The medium 

is subjected to two line sources of opposite polarity as shown in Fig 4.1. The line 

source for this development is the 2-dimensional analogue of the source specification 

given in Eq. 2.33. The plane of separation formed by the x2 and x3 coordinate axis, is 

midway between the two sources and is perpendicular to the line joining the two 

sources. It should be noted that since the crystallographic axes coincide with the 

coordinate axes, the plane of separation is also a plane of isotropy. This type of 

arrangement will result in a nonzero shear stress state, and a zero normal stress state 

at the plane of separation. If we apply at the separation plane, a shear stress of 

opposite sign to the shear stress resulting from the source-sink combination, a stress- 

free state will be obtained at the separation plane. With the aid of the uniqueness 

theorem relating to a system of linear differential equations, the separation plane can 

now be identified with the stress free bounding surface of an elastic half space. It 

should be noted that no net thermal energy is transferred to the sample since the 

source and sink are of equal magnitude and opposite polarity. As a consequence, the 

total strain energy remains constant. This can be understood by noticing that the sink 

has reduced the strain energy of the system relative to a reference state by an amount 

equal to the increase in the strain energy of the system produced by the source. 
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Plane 

Fig. 4.1. Problem geometry with source and sink locations. 

The elastic equations of motions in two dimensions are written as follows: 

ßu2,22 +U2,33 -U2,TT 
+ KU3,23 ~ FX2(real) + FX2(image) ' 

KU2,23 +U3,22 +CtU3,33 -U3,TT 
= ^x3(real) + FX3(image) » 

(4.1) 

where the source-sink specification are given by 

Fx2(real)=F2S'(x2)S(X3-a)H(T), 

Fx2(image)=-F28'(x2)5(x3-a)H(T) 

Fx3(reai)=F38(x2)8I(x3-a)H(T), 

FX2(image)=-F38(x2)8t(x3-a)H(T) 

8'(Xi) = ^ . dx 

(4.2) 
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where F2 and F3 are 

F2 

F3 

_ B22To 

Q44 

_ B33To 

C44 

(4.3) 

The transformed equations of motion are expressed as 

[_ßT12 _k2 -s^^^k^^^^^^s^il^^-ika _eika}j 

-TlKk^üa^lcs^+f-Ti2 -ok2 -s2^ü3(Tl,k,s)) = ^-(e-|kE -eto), 
(4.4) 

where a bar denotes a transformed displacement. The Fourier-Laplace transform 

operator is defined as 

u2/3(Ti,k,s)= J J Ju2/3(x2,x3,T)e-(iT,X2+ikX3+ST)dndlcdT . (4.5) 
—00—00 0 

Now the equations can be uncoupled algebraically giving: 
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U2(r\Xs) = — 

U3 (Tl,k,s) = — 
s 

2\/- iak -iak>. (F2 (if + akz + sQ - F3KT )(e    - e     ) 

ak4+k2((a+l)s2+yn2)+(ßn4+(ß+l)s2n2+s4) 

(F3(ßT1
2+k2+s2)-F2T1

2K)(eiak-e-iak) 

ak4 +k2((a+l)s2 +m2) + (ßTi4 +(ß+l)sV +s4) 

(4.6) 

The denominator in Eq. 4.6 can be identified with the equation for the slowness 

surface. Dependence on x3 is recovered using partial fractions and a table of integral 

transforms. The result is given by 

u2(ri,x3 ,s) = 
in 

2s(kf; - -k2) 

in 

2s(k?, - k?) 

U3(t|,X3 s) = 
1 

2s(k^- k2) 

1 

.2  , „2 F2(rf+sz+aki)-F3Kk 

k! 
LN!(x3) 

.2  , „2 F2(r] +sz+ak3)-F3Kk3 N3(x3) 

F3(ßn2 +k2 +s2)-F2T1
2Kfd(N1(x3)) 

k, v    dx3     j 
(4.7) 

2s(k^-k2) 

F3(ßn2 +k2 +s2)-F2ri
2Kf d(N3(x3)) 

v     dx3     j 

Nx(x3) = e-
kll(X3"a)l -e-k'l(X3+a)l ,     N!(x3) = e-

kl|(X3"a)l -e-kll(X3+a)l , 

where (kj)2 and (k3)
2 are defined as the two roots of the biquadradic equation 

representing the slowness surface. It should be noted that the roots to the slowness 

surface can be complex. Borrowing notation used by Payton [23], crystals that 

exhibit elastic transverse isotropy can be divided into three categories according to 

the behavior of the displacements of these crystal classes along the symmetry axis. 

These categories are listed below 

67 



51 

(i)       (a + ß)<y<(l + aß), 

(ii)       (ß +1) < y < (a + ß) and (y2 - 4aß) < 0 , (4.8) 

(iii)       y < (ß + 1) and (y2 -4aß)< 0 also ß > a . 

For crystals belonging to the first category in Eq. 4.8, the roots of the slowness 

equation are purely imaginary. In addition, there are no cusps in the wave-front 

curves for class (i) crystals. The crystals belonging to categories (ii) and (iii) have 

complex roots and the wave-front curves for these crystals have cuspidal triangles. 

For class (iii) crystals, the triangular portion of the wave-front is centered on the 

symmetry axis. It will be shown, that for class (i) crystals, the solutions along the 

free surface or in the epicentral direction behave in a similar manner to isotropic 

materials. However, the evolution of the solution for class (ii) and (iii) crystals 

differs profoundly from their isotropic counterparts. It should be noted that this 

classification scheme given in this chapter, denoted by lower case Roman numerals, 

is different than the one presented in the previous chapter, denoted by upper case 

Roman numerals. 

Notice that the displacement in the X3 direction contains the 1st derivative of 

N(x3 ) and as a consequence, the sign of the displacement changes as an observer 

passes the source. This sign change is tantamount to a discontinuity. The x2 

displacement is not discontinuous at the source as a function of x3. In preparation for 

evaluating the stresses at the mid-plane between the source and sink, the displacement 

and the derivatives of displacements in Eq. 4.7 can be written as 
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U2 
x,=0 

= U3,3 

U2,3 lim 
a^OV 

limf U3 
a^>(\ 

x3=0 

x3=0 

x3=0 

iT) 

s 

_"F3 

= 0, 

= ^-(F3K-F2a), (4.9) 

Next the normal and shear stresses at the plane x3 = 0 are evaluated, giving 

<*33 (r|,0, S) = (XU3.3 + iT|(K - 1)U2 
x3=0 

lim(CT23(r|,0, s)) = limf U2,3       + ir|U3 
a-»0 a-»(\ x3=0 

= 0 

x3=Oj 

-in 
(F3+F2a-F3K) , (4.10) 

For isotropic mediiun, (1 + a - K) =2 . 

Thus, the source and sink annihilate as they are moved to the plane of separation, 

leaving only a shear stress contribution at the X3 = 0 plane. A stress free condition 

can be achieved at the X3 = 0 plane, by applying a shear stress at the bounding 

surface of opposite sign to the one listed in Eq. 15. The equivalent shear stress 

boundary condition becomes 
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(a23)X3=0=F8'(x2)H(T) 

F = (F3+F2a-F3K) . 

(4.11) 

(4.2) HALF SPACE SUBJECTED TO SHEAR STRESS DIPOLE 

Now, a line source representation for laser generated ultrasound will be 

presented using the equivalent boundary conditions listed in Eq. 4.11. The equations 

of motion are written as 

ßu222 +u2;33-U2TT + KU323 = 0 , 

^2,23 +U3,22 + aU3,33 -U3,n = ° - 
(4.12) 

The transformed equations of motion are: 

-ßn2
+|l-s2 

i 

U2(n,k,s)j+ir|K - 
du3(r|,k,s) 

dx? 
= 0 

J 

nie 
du2(r|,k,s) 

ox. 
2^2 -n +a—z—s* 

öx2 fu3(r|,k,s)J = l 

(4.13) 

Solutions to the system of homogenous differential equations are of the form: 

u2(t1,x3,s) = A1e
iklX3+A2e

ik3X3 , 

ü3(Ti,x3,s) = A3e
iklX3+A4e

ik3X3 , 
(4.14) 
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where lq/3 are the physical roots to the slowness curve. Next, the following 

substitution will be made so as to facilitate the Cagniard [16] inversion technique: 

k = s£ ,       T|=SÖ) , (4.15) 

The denominator of Eq. 4.6 will be rewritten using the above substitutions, 

aC4 + C2((«+1) + W) + (ßffl4 + (ß+1)«2 +1) = 0 (4.16) 

The four roots to the slowness curve may be written as 

V2a 

52(
ö)) = -CI(ö)) , 

lt=3 (®) = * 7Z=  • = iC3(ö>) » 

^4(®) = -C3(
G)) » 

(KG>) = [/CO
2
 + (a+l)f - 4a[ßco4 + (ß+l)©2 +1]. 

(4.17) 
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As a consequence of the branch cut locations that will be introduced shortly, we have 

d>0,   c3>o,   C2<0,   c4<o (4.18) 

The coefficients A3 and A4 are not independent but are related by the fact that the 

above displacements must solve the equations of motion. By substituting both 

solutions into the transformed equations of motion, it can be shown: 

A1=A3 

A2 -A4 

aCi2-G>2-r 
iKCO^! 

"aC2-ß)2-l 
iKa>£3 

(4.19) 

The coefficients A3 and A4 are found by requiring the expressions for the 

displacement in Eq. 4.14 to satisfy the boundary conditions in Eq. 4.11, 

A,=- ^ [co2 [at£ + (K - l)e>2 + (K - 1)J 

A4 = 

s(Ci-C3)D 

s«1-WDW^+(K-1)ffl2+(,£-1)H 
D = [2(1 - K)(CO

4
 + a2) - (yea2 + a)(a>2 +1) - adC3 J 

(4.20) 

where D is the Rayleigh denominator. 
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(4.3) SOLUTIONS ALONG THE BOUNDING SURFACE 

For displacements along X3=0, the Cagniard integration path is along the 

imaginary a axis. This can be shown in detail by considering the 113 displacement 

for X3=0. Operating on the 113 displacement with the inverse Fourier, and noting that 

113 is even in GO, gives 

_ 1 "WL 
u3(x2,0,s) = Re— Ju3(ö>,s)d<jü , 

71 0 

u3(s,Q)) = ^-[aC1C3 +(1-K)(CO
2
 +1)] e'-kl , (4.21) 

Cagniard Path—>ira|x2| = T = real 

The Cagniard path is the imaginary <a axis. Before the Cagniard inversion can be 

performed, the branch points and singularities associated with ü3 must be identified. 

Branch points for £(©) may arise in two distinct ways: 

1.) <K©) = 0, 

(4.22) 

2.) y(D2+(a+l)±V<KG>)=0. 

Presently, only the inversion of U3 is being considered. Since U3 is an even function 

of V<K®) > branch points arising from (1) need not be considered. As a consequence, 

the solution technique for solutions along the bounding surface is the same for class 

73 



57 

(i), class (ii) and class (iii) materials. If U2, which is odd in ^(JH©) , were being 

examined and the crystal under consideration belonged to class (ii) or class (iii), then 

the branch points arising from (1) would be involved in the solution. The branch 

points originating from (2) are 

© = ±-^ ,       ö) = +i . (4.23) 
Vß 

The branch cuts which make C,\, and Cß single-valued in the ©-plane are shown in 

Fig. 4.2 and can be defined as 

for  © = —T=, 
Vß 

Vü)2+l/ß=(R1R2)
1/2ei(9l+e2)/2 , 

CD + i/VßL Rl/2 - 

01/2=arg(©+i/Vß), (4 24) 

or  © = i, 

V©T^T = (R3R4)
1/2ei^+e^/2 , 

R3/4=|©+i|, 
03/4=arg((ö + i)- 

The product, C,\Cß, plays an important role in the Cagniard inversion process for u3. 

With the branch cut so defined, the product, ClC3» exhibits the following behavior 

along the imaginary © axis: 
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^ = rß(l/ß-(D2)(l-a)2) 

CiC3=ii 

«3—1 

jß(co2-l/ß)(l-co2) 
a 

[p(fl)2-i/pxfl>2-iT 
a 

for 0<co2 <1/Vß . 

for l/Vß<co2<l , 

for co2^l. 

(4.25) 

«2 

iak 

i(ß) 
■1/2 

P' s 
\ 
\ 

CO, 

Fig. 4.2. Integration contour for the vertical displacement, u3, at the bounding 
surface. 

The singularities in the function D(co) will now be discussed. The branch points 

singularities for this function have been discussed above. Only pole singularities in 
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D(©) need to be considered. After squaring and simplifying, the equation for D(©)=0 

yields: 

a2©2 + a(a+2a)cD4 + a(2a + a - ß)©2 + a(a -1) = 0 , v J v F (4.26) 
a=2K-2+y. 

The roots of interest will lie on the positive imaginary axis. The remaining roots will 

lie on the nonphysical sheets of the Riemann surface. The (Rayleigh) root of Eq. 

4.26 will be denoted by D(©r)=0. Now the integration contour and the subsequent 

inversion of the integral in Eq. 4.21 may be performed. Fig 4.2 shows the complex © 

plane along with the integration contour. The real axis is the Fourier inversion path 

and the imaginary axis is the Cagniard inversion path. Since the contour does not 

enclose any singularities, by Cauchy's theorem the closed path integral will vanish. 

The Fourier inversion may be written formally with the aid of Eq. 4.21 as 

Re^ 

+00 1 / ^ 

Ju3(s,©1)d© + J + Pju3(s,i(a2)id(D+(7ii(residue @ © = i©rj+ 
0 Cj 00 

1/Vß o 
J+  ju3(s,i©2)id©+ J+   Ju3(s,i©2)id© 

C3     1 c4   i/Vß 

= 0, 

(4.27) 

ü3(s, ©) = -^- [a^3 + (1 - K)(©
2
 + 1)]BH»SI , 

where the first integral in Eq. 4.27 corresponds to the Fourier inversion path. The P 

in front of the third integral indicates that this integral is to be interpreted as a Cauchy 
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principal value integral. Before evaluating the second integral, the asymptotic 

expression for the transformed displacement as © -> QO must be investigated: 

- x   n   s vx/öß + 1-K) (4.28) 

Thus, 

lim(e>u3(G)))= cos 
~J(VO^+1-K)\L 

2(1-K)-Y 

istoy = 0 (4.29) 

The above relation can be shown by considering that along C\, <o has an imaginary 

component and as a consequence, the real part of the argument of the exponential is 

negative and increasing negatively. From Jordan's lemma, the second integral is 

zero. From Eq. 4.25, the product, C,\Cß, is real for co > 1 and 0< co < l/^/ß   and 

since D is an even function of co, the integrands associated with the 3rd and 8th 

integrals on the left hand side of Eq. 4.27 are imaginary. As a consequence, 

Re P Jü3(iö)id(D = Re 
^ 

Jü3(ioo)idö) = 0 (4.30) 

Using L'Hopital's Rule, it can be shown that 
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lim fä3(i+seie)}= finite . (4.31) 
z-*0 

In addition, 

lim {u3(i / Vß + eeie)}= finite . (4.32) 
6->0 

From Eq. 4.31 and Eq. 4.32, it follows that the 5th and 7th integrals on the left hand 

side of Eq. 4.27 are zero. The Fourier inversion for the out of plane displacement can 

now be written as: 

It      ,   !/^ 1 u3(x2,X3,s) = Re^{7iiv)/r}+   Ju3(i(ö)id(öf , 
I i J (4.33) 

v|/r =residue(ü(icor)) . 

The residue associated with the simple pole at amoöj. can be calculated with the aid of 

L'Hopital's rule: 

''-X^^^'IPML. • <4-34) 

where \|/r can be written explicitly as 
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w =isö) ~ f(l-or)f-2(l-K)a)2 + ya)2 -a-H-ic]] -^ 
' r   1 D'(iß)r) J 

dD(ia)r) / da) = 4(1 - K)(-2G>
2
 +1) - 2(-2y+y + a) - (4.35) 

a(ß+l)-2aß(or
2 

(l-ß)?)[-2(l-K)cDr
2+Y(D?-a] * 

Before performing the Laplace inversion of Eq. 4.33, it should be noted that the 

integrand of the second integral is complex. The real part of the integrand can be 

written as 

tote»»}- -^4'-«>q+2°>;>-(«+r«>2)1 . (4.36) 
|2(1-K)©

2
 -ytD2 -af (l + (D2)-a(ß(ö2 +1) 

The Laplace inversion is further simplified by introducing the following change of 

variables: 

T = <B|X2| , 

dx (4.37) 
d(o = 

X2 

Now Eq. 4.33 will be operated on with the inverse Laplace operator giving 
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U3(X2,0,T) = F(G(T)), 

G(T) = yr6(T-Cör|x2|) + i^-^(T-|x2|/Vß)-H(T-|X2|)], 
X2 TC 

(4.38) 

where g(x) is given by 

g^_     FTV1C3[(l-K)(l-2T2)-(a-YT2)|      ^ 

[- 2(1 - K)T
2
 + yT2 - af (1 - T2) + a(ßT2 -1) ' (4.39) 

T = : 

A typical displacement waveform generated using Eq. 4.37 is shown in Fig. 4.3. 

G(T) 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.8 

-1 
0.5 1 

T/X, 
1.5 

Fig. 4.3. Theoretical displacement for surface waves generated with a line source in 
zinc as a function of T. Delta function represented by vertical line at T=1.13. 

Figure 4.3 demonstrates that the surface-skimming wave turns on at the longitudinal 

velocity and turns off at the shear wave velocity. The latter arriving Rayleigh wave 
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travels as a Dirac Delta function. The characteristics of the waveform for class (i), 

class (ii), and class (iii) materials are similar. The similarity is due to the fact that the 

contributions from the branch point corresponding to (1) in Eq. 4.22 do not effect the 

solution for the vertical displacement. The corresponding similarity for the in-plane 

displacement components does not exit. It should be noted, according to Eq. 4.38, 

the Rayleigh wave travels without geometric attenuation, while the surface-skimming 

wave, represented by g(t), decreases in amplitude inversely with the distance from 

the source. This can be understood by first noting that the source doesn't allow 

energy to flow in the x, direction. Thus since the Rayleigh wave is confined to the 

surface, the amplitude must remain constant. Conversely, the bulk wave, represented 

by g(x), isn't confined to the surface, therefore, the amplitude must decrease with 

propagation distance. 

(4.3) SOLUTIONS ALONG EPICENTRAL AXIS 

Solutions along the epicentral axis form another class of solutions that can be 

inverted using the Cagniard technique. The location of the Cagniard path in the 

complex plane depends on the category of crystal being investigated, (see Eq. 4.8). 

For materials belonging to category (i), the Cagniard path is along the real <a axis. 

For class (ii) and (iii) materials, the Cagniard path is off the real © axis. The formal 

solution for the vertical displacement along the epicentral axis is given as 
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_ 1   °° u3(0,x3,s) = — Jü3(r|,x3,s) sd© , 
2rt -a, (4.40) 

U3(TI,X3,S) = A3e"ClX3S +A4e<3X3$ . 

The coefficients, A3 and A4, are defined in Eq. 4.20. Since the roots to the slowness 

equations, £„ and £3 are even functions of o, U3(ti,x3,s) is even in G>, thus 

ü3(0,x3,s) = -Re|]A3e
_;iX3Ssdcö + ]A4e-C3X3Ssdö)| . (4.41) 

71       [o 0 J 

In what follows it will be convenient to make die following substitution, 

tu = co2, 

u3(0,x3,s) = -Re{l1+I3}, 

(4.42) 
Ij = |A3e-?lX3Sdta,    I3 = jA4e^3X3Sdt!j, 

o o 

Ä3/4=^ 
2Vt5 

The substitution given in Eq. 4.42 consolidates the branch cuts along the real and 

imaginary axes so they both lie on the real axis. The expressions for the slowness 

surface given in Eq. 4.17 now take the form, 
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[-((g + l)+Ytg)-V^(CT 
-i(ro)= vs— 

■1/2 

C2(ra)=-Cifa), 

-((g+l)s+YCT) + V(Kro) 
S3(GJ) = -^ 5= J— » 

V2a 

Ct(rc)=-;3(raO » 

(|)(TO) = [yoj+(a +1) J - 4a[ßtn2 + (ß+1)üJ+1] 

(4.43) 

The Cagniard path for the first integral in Eq. 4.41 is defined by 

d(w)x3=T , 

T = real and positive . 
(4.44) 

(4.3.1) SOLUTION FOR CLASS (i) MATERIALS 

For class (i) materials, the above condition on x is met for real tu, giving the 

positive real xs axis as the Cagniard contour. Squaring Eq. 4.43 twice and solving for 

er in terms of T gives 
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xsm = ■ 

A = ß, 

-B±VB
2
-4AC 

B = ß + l-y 

C = l-(a + l) 

2A 

,4) 
^ 

vx3y 
■a 

fx<\ 

\X3J 

(4.45) 

Changing variables from tö to T results in 

ü3(0,x3,s) = -Re(]A3e-TSs^dT+   J A4e-TSs^-dxl . 
71        [i dz l/V^ dz 

(4.46) 

Operating on the expression for the vertical displacement given in Eq. 4.46 with the 

inverse Laplace operator gives 

U3(0,X3,T) = — Re Ä3^1H(T-1)+Ä4^.H(T-1/VO:) 
dz    v     ' dz    v ' (4.47) 

The displacement waveform, for Beryl, shown in Fig. 4.4 has characteristics similar 

to the displacement waveform for an isotropic material, Fig. 4.5. Both waveforms 

show the presence of two distinct wave arrivals. However, a close comparison 

between Fig. 4.4 and 4.5 show that the decay of the pulse tails is somewhat altered by 

the introduction of anisotropy. 
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Fig. 4.4. Theoretical displacement for the epicentral wave generated with a line 
source in Beryl. 

0.04 

Fig. 4.5. Theoretical displacement for the epicentral wave generated with a line 
source in an isotropic material (polycrystalline aluminum). 
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(4.3.2) SOLUTION FOR CLASS (ii) AND (Hi) MATERIALS 

For class (ii) and (iii) materials, the Cagniard path no longer lies on the real ta 

axis. Before embarking on the solution for these materials, the location of the branch 

points must be investigated. As was the case for solutions along X3=0, branch points 

associated with <£(©) may occur in two ways, 

l.)<Kt*) = 0, 
(4.48) 

2.) yro+(a + l)±V<Kta)=0 

In contrast to the surface wave case, the expression for U3 for the epicentral case is an 

odd function of -^(ro) , and as a consequence, the branch points arising from (1), 

Eq. 4.44, need to be considered in addition to the branch points arising from (2). The 

expression for ^§(w) may be rewritten as 

VS^) = V(Y2-4aß)(tiJ-<iJ+XGJ-t3_) , (4.49) 

where 

-[Y(a + l)-2a(ß+l)]TV4[a(a+ß-Y)(a + aß-Y)] (A ,m 

(y2-4aß) 
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Thus ^ty(xs) will have branch points on the real xs axis at xs=xs+/. . Branch points 

arising from (2) are located on the real xs axis xs=-l and Gj=-l/ß. If we take zinc, 

for example, £1 will have branch points at tu=xs. and xs=xs+ while £3 will have 

branch points at xs=xs., xs=xs+, xs=-1, and xs=- 1/ß.   The Cagniard path for the 

first integral is again defined by Eq. 4.44, but xs is now a complex variable given by 

xs = xsl+ixs2 • (4.51) 

Substituting Eq. 4.51 into Eq. 4.44, and squaring twice to eliminate the radicals and 

equating the real and imaginary part of the equation gives 

yz1xs1 + (a+1)T
2
 - at4 = ßO? - xsl) + (ß+!M + * » 

2 (4-52> yx GJ2 =2ßüJ1üJ2+(ß+l)TO2 . 

The second equation of Eqs. 4.52 is satisfied if ra2=0. Since the branch points, for 

class (ii) and (iii) materials, lie on the real axis, the first of Eqs. 4.52 imposes the 

additional constraint 

xs_<xs1<xs+       for £i(tn) , 

-l/ß<cJi<GJ+       for C,3(xs). (4.53) 
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If üJ2 * 0, then xs2 and GJj can be expressed in terms of the parameter T3 as follows 

tn1(T3) = YT2-(ß+l) 
2ß 

ra2(T3) = 
V4aß-Y2(T2-T!)(T2-^) 

2ß 

(4.54) 

where 

2    -[Y(ß+l)-2ß(a + l)]±V4ß(g + ß-Y)(l + aß-Y) 
(4aß-Y

2) 
*± = (4.55) 

The paramentric expressions given in Eq. 4.54 map out a hyperbola in the complex tu 

plane that intersects the real tn axis at 

G*4 

Y(a+l)-2a(ß+l)±J^-(a + ß-Y)(a+aß-Y) 

(4aß-y
2) 

(4.56) 

Using zinc as an example, the Cagniard paths for C,\, and £2 are shown in Fig. 4.6. 
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Fig 4.6. Cargniard contour for zinc. Solid line represents contour corresponding to 
£x and the dashed line represents the contour corresponding to £,. 

The expression for I\ listed in Eq. 4.42 may be rewritten as 

Wln+ An + /In, 
t0       r,       r2 

To=- 
(a+l)-V(a+l)2-4a 

(4.57) 

Investigation of the first integral in Eq. 4.57 shows 
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JI„ = jA3e-s^dx , 
^O 'o 

üj(T) = ^(T) = (-)real, (4.58) 

A3 = (imaginary) . 

Thus, In is purely imaginary and does not contribute to the epicentral displacement. 

The second integral in Eq. 4.57 can be written as 

JI„ = jA3e-s^dx , 
r,       r, ox (4<59) 

CJ is taken along Tx . 

The third integral in Eq. 4.57 vanishes, since 

JIn->0 as   |BJ|-»OO . (4.60) 
r2 

This completes the inversion for the ^ portion of the Cagniard contour. The contour 

for C, j is represented in Fig. 4.6 by the dashed line. The expression for I3 given in Eq. 

4.42 may be rewritten as 
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h ~ Ä33+ ^33+ Ä33 1*33 + A33+ 1^3 > 

T      —   _ST 9tu , 
I33=A4e    —dx , 

dx 

-B + VB
2
-4(XC ,. „, 

T°=i—7k—' (4-61) 

B = -(ro+y+a + l) , 

C = T5J+ß + TO+(ß + l) + l. 

Before continuing with the inversion of I3 the character of v*K^0 as ^ contour 

passes to the lower half plane at xa+ must be investigated. The expression, ^/^(CJ) , 

can be written as 

e = arg^(t0)|). 

As the contour travels around the branch point, 8 changes by 2TC causing the real part 

-^/<j>(tJtj) to change sign. As the contour continues from ta+ to x0, the imaginary part 

of -^(GJ) remains zero and as a consequence, ^(xn) -> - -Jfyixs) as the contour 

proceeds to the lower half plane.   Thus, after transversing the branch point at vs+, 

Cß-> £1 and A4 -» A3. The first integral in Eq. 4.61 can be written as 

JI33= fA4e-ST—dx , (4.63) 
dx 
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where the expression for GJ(T) along the real axis is obtained by solving the first of 

Eqs. 4.51, 

tD2 = 0 , 

-B + VB
2
-4AC 

1 2A 
A = ß , (4.64) 

B = ß + l-yT2 , 

C = l + aT4-(a + l)T2 . 

Since the portion of the real TB axis of interest is to the right of tar+, the positive sign 

in front of the radical in Eq. 4.64 will be taken. The second integral in Eq. 4.61 is 

zero since, 

tfI33-»0   as y~>0. (4.65) 

The third integral in Eq. 4.61 can be written as 

JI33=-jA3e-s^dT, 

vs is taken along real axis . (4.66) 
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The fourth integral in Eq. 4.61 does not contribute to the epicentral displacement 

since 

T?T        XrT   -ST dm , JI33=-JA3e
ST—dt 

tü(T) = £(x) = (-)real , 

A3 = (imaginary) . 

(4.67) 

The fifth integral in Eq. 4.61 is written as 

JI33=-jA4e-"^dT, 
r, r, ox 

m is taken along T3 

The last integral in Eq. 4.61 vanishes since 

(4.68) 

JIn->0 as  I-QJI —> 00 (4.69) 

Applying the inverse Laplace transform operator to Eq. 4.57 and Eq. 4.61 gives 

— (dm   -\ 
U(0,X3,T) = A4 -^ {H(x-xe)-H(x-T0)}+ 

^   dz 

A3 
V     &     J 

fl(T-TL)-H(T-Te)}+A4 (& m. 3->4 

dx W-^p)} 
(4.70) 
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A plot of the theoretical epicentral displacement for zinc is given in Fig 4.7. The 

character of the epicentral waveform for zinc is considerably different that it's 

isotropic counterpart, shown in Fig. 4.4. The arrivals of the various waves in Fig. 4.7 

is best understood by referencing the portion of the wavefront curve that pierces the 

symmetry axis, Fig. 4.8. The first wave arrival corresponds to the longitudinal 

branch of the wavefront curve. The solution gives zero for the portion of the wave 

the corresponds to the interior of the cuspidal triangle. The majority of the acoustic 

u. 

0.5 r 

0 

-0.5 

-1 

-1.5- 

-2 

-2.5 

-3- 

-3.5 
0.5 1 1.5 

X/X3 
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Fig. 4.7. Theoretical displacement for epicentral wave generated with a line source 
in zinc as a function of T. 

energy arrives in the form of a reciprocal square root singularity at a time 

corresponding to the apex of the cuspidal triangle. The presence of the square root 

singularity in the epicentral waveform for zinc is an artifact of the conical 

point on the wavefront and is commonly referred to as phonon focusing, [45]. 
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Fig. 4.8. Enlargement of portion of wavefront intersecting the symmetry axis for 
zinc. 

(4.4) 3-DIMENSIONAL HALF-SPACE 

The procedure for rinding the equivalent boundary conditions for the 3- 

dimensional case follows the 2-dimensional case. The transformed solution for the 3- 

dimensional equations of motions, 2.33, is given by 

Ui(3C>rWx3>s) = IX 
2s(kf-k?) 

F2(t
2
+s2

+akf)-F3Kk1
2
Ni(x3)- 

,2     i,2^ 

u2(X>*l>x3,s) = 

2s(k|-kf) 

in 

F2 (i2 +s2 + ak2)- F3Kk2 XT . _zi n—5—J-N3(: x3) 

2s(k2-k2) 

in 

(.W+ak?)-^^ 

,2     i,2> 

u3(X,r|,X3,s) = 

2s(k|-k0 

1 

F,(i2 +s2 +ak2)-F3Kk2 VT . 
-^ ^—-—-N3(: 

.2     ,,2> 2s(k|-kf) 

1 

x3) 

F3(ßi2 +k2 +s2)-F2i
2Kf d(N1(x3))" 

(4.71) 

k, 

2     1,2 N 2s(k|-kf) 

F3(ßi2 +k2 + s2)-F2i
2icf d(N3(x3))^ 

k3 ^     dx3     j_ 

N1(x3) = e-ikll(X3-a)|+e-kll(X3+a)l, 
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where, x is the Fourier transform parameter for the Xj coordinate and I2
=X

2
+T|

2
. The 

equivalent stress boundary conditions are obtained by substituting the displacement 

equations, Eq. 4.71, into Eq. 2.35, and evaluating the stresses at the bounding 

surface. 

(a13l3=0=F6'(Xl)5(X2)H(T)' 

MX3=0=FS'(X2)5(XI)H(T), 

F = (F3+F2a-F3K) . 

(4.72) 

The stresses given in Eq. 4.72 has the same functional form as the equivalent stress 

boundary conditions given by Rose [5]. The pre-multiplier, F, is a function of the 

elastic constants for the anisotropic case and independent of the elastic constants for 

the isotropic case. The value of F for various materials is given in Table 4.1. 

Table 4.1. Shear stress pre-multiplier for various transversely isotropic materials. 

CRYSTAL a ß Y F 

Beryl 3.62 4.11 11.81 2.60 

Ice 4.57 4.26 13.51 2.93 

Titanium 3.88 3.47 8.31 2.40 

Zinc 1.57 4.17 2.40 0.30 

Cadmium 2.62 5.95 6.80 0.49 

Isotropic a=ß=y/2 2 
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The solution procedure for a 3-dimensional half-space with the boundary conditions 

given by Eq. 4.72 starts by considering transformed homogeneous equations of 

motion 

[-ßx-8Ti+D2-s2]ü1-(ß-8>cnü2+iKxDÜ3=0 , 

-(ß-o^nÜ! + [-8x-ßn +D2 -s2] ü2 +inKDü3 = 0 , 

iK/Düi +ir|KDü2 + [~x2 -r\2 + aD2 -s2J ü3 = 0 , 

d 

(4.73) 

D = 
ox. 

The solutions to the homogeneous equations of motion will have the form 

i^Bie**. (4.74) 

Substituting Eq. 4.74 into Eq. 4.73 gives the matrix equation 

A«B = 0 (4.75) 

where 

A = 
ßX-8ri-k2-s2 -(ß-8)zn -K%k 

-(ß-8)M -8x~ßr|-k -s -T|Kk 

-K/k -r|Kk 2        2        i 2       2 -% -r\ -ak -s 
(4.76) 
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For a non-trivial solution to exist, the determinate of [A] must vanish giving 

[k2 +o(x2 +r|2) + s2] [ak4 +k2((a+l)s2 +y(%2 +r,2) 

ß(5C2+n2)2+(ß + l)(X2+ri2)s2+s4]=0 . 
(4.77) 

The six roots of Eq. 4.76 are written as 

k   f-(a+i)s2-Y(x2+n2)+V<Kx>n)[ 

1 V2Ö 
k2 =—kj , 

[-(a+l)s2 -Y(X
2
 +r\2)-Ml,T\)Y 

11 

k3 = 

K4 —  JC3 , 

♦fori) = \y(x2 +t1
2) + (a + l)]2 -4a[ß(x2 +n2)2 +(ß+l)(%2 +n2) + l] 

It will be shown that along the Cagniard Path, the k-roots satisfy 

(4.78) 

lm(k;)<0,     i = 1,3,5 
lm(k;)>0,     i = 2,4,6 

(4.79) 

Thus, k2, k» and kg represent the physical roots. Using the first two equations in Eq. 

4.75, the eignevectors for k2 and k, are given as follows 
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B1(ka) = B3(ka)Ai3(ka), 

B2(ka) = B3(ka)Ä23(ka), 

[A12(ka)A23(ka)-A13(ka)A22(ka)] 
"     [A22(ka)A11(ka)-A21(ka)A12(ka)] 

X23rk ) - [A2i(ka)A13(ka)-A23(kg)An(ka)] 
[A22(ka)An(ka)-A21(ka)A12(ka)] ' 

a = 1,2. 

The second two equations of Eq. 4.75 are used to define the eigenvector 

corresponding to kg since the first two equations are linearly independent for kg. The 

resulting eignevector is given by 

B1(k6) = B2(k6)Ai2(k6), 

B3(k6) = 0, (4.81) 

X2fk )- [A32(k6)A23(k6)-A33(k6)A22(k6)] 
°    [A23(k6)A31(k6)-A21(k6)A33(k6)] ' 

It should be noted that B3(k6)=0 stems from the fact that u3 satisfies a fourth order 

differential equation while ut and Uj require a sixth order operator to describe their 

motion.   The component B3(ki) is found by satisfying the boundary conditions. 

Using Eq. 4.80 and Eq. 4.81 in Eq. 4.72 gives 

99 



83 

B3(k2)^ + Ai3(k2)]+B3(k4)f%+Ai3(k4)]=^ , 
s 

B3(k2)f71 + Ä23(k2)]+B3(k4)fT1 + Ä23(k4)] = ^   , (4.82) 

B3(k2) 

B3(k4) 

(K-l)fxAi3(k2)+iriA23(k2) 

(K-1) ixAi3(k4)+iriA23(k4) 

+iak2 

+iak4 

+ 
= 0. 

It appears that there are three equations for two unknowns in Eq. 4.82, but a closer 

investigation reveals that the first two equations are colinear. Solving Eq. 4.82 for 

B3(k2) and B3(k4) gives 

= _Fk2l Lk2+(K_1)l2+(K_1)] 
3 (k2-k4)DL    4 n 

= _Fk4i [ak2+(K_1)l2+(K_1)l 
4 (k2-k4)Dl    2 n 

D = [2(1 - K)(I
4
 + i2s2) - (yi2 + as2)(i2 + s) + ak2k4] 

(4.83) 

Notice that the expressions for B3(k2) and B3(k4) have the same functional form as A3 

and A4 given in Eq. 4.20 with r| replaced by 1. The formal solution for the axial 

displacement is given by 

u3(x1,x2,x3,s) = -i-r J /ko^)^ +B3(k4)e^)dr|d% 
\2SIZ)   —00 —00 

(4.84) 
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In anticipation of the Cagniard inversion method, the following substitution of 

variables, 

X = swcos(cp) ,     r| = swsin(<p) , (4.85) 

leads to 

u3(xl5x2,x3,s) = -i-r7s2wdw /(l^k^e*^ +B,(k4)eik^)i(? . (4.86) 
(2TI)   o o 

Since the integrand is independent of q>, a consequence of the source symmetry and 

the transverse isotropy of the material, the representation of the axial displacement in 

Eq. 4.85 can be reduce to the evaluation of a single integral, 

u3(x1,x2,x3,s) = -i-](B3(k2)eik2X3 +B3(k4)eik^)S
2wdwdcp . (4.87) 

(2rc)  o 

A detailed implementation of Cagniard's method can be avoided by noting that the 

integrand for the 3-dimensional case, Eq. 4.86, is obtained by multiplying the 2- 

dimensional analogue by the product of the Laplace and Fourier transform 

parameters. The multiplication by the Laplace transform parameter is tantamount to 

taking a temporal derivative. The solution procedure now becomes obvious. First 

multiply the transformed solution for the 2-dimensional case by the Fourier transform 
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parameter and find the inverse. The temporal derivative of the inverse is now 

associated with the solution for the 3-dimensional case. The above procedure has 

been carried out for axial displacement in the epicentral direction resulting from a 

laser point source in zinc. Figure 4.9 shows the results of this procedure. 
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G(T) 0.2 
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Fig. 4.9. Epicentral displacement for laser point-source in a 3-dimensional half- 
space. 

A close examination of the waveform reveals that there is a small amount of energy 

arriving at the quasi-longitudinal velocity. It is interesting to note that the portion of 

the waveform corresponding to the interior of the lacuna is no longer zero. 

Mathematically, this is an artifact of having to multiply the 2-dimensional analogue 

by the product of the Laplace and Fourier transform parameters to obtain the 3- 

dimensional solution. 
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CHAPTER 5 

This chapter is dedicated to solutions that must be obtained numerically. The 

idealized nature of the source and the specific location of the observation point made 

the analytical results in Chapter 4 possible. If the source considered is located 

beneath the surface and/or if the observation point is off the symmetry axis, then the 

solution must be obtained numerically. The numerical nature of the solution follows 

from the fact that the Cagniard path must be obtained numerically. This chapter 

considers two specific numerical problems. The first problem entails a surface line- 

source and observation points that are off the symmetry axis. The second problem 

involves displacements along the symmetry axis due to a buried line-source. 

(5.1) OBSERVATION POINTS OFF THE SYMMETRY AXIS 

Consider the inverse of Eq. 4.14 for observation points that are neither along 

the symmetry axis nor on the bounding surface. The geometry of the problem is 

shown in Fig. 5.1. The bounding surface coincides with the plane of isotropy. The 

source is a surface line-source. The observation angle, 0, is defined as the angle 

between the symmetry axis and a line joining the source and observation point. 
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Source 

Plane of isotropy. 

Detection location 

Fig. 5.1. Problem geometry with source and detection locations. 

Formally, the inverse of Eq. 4.14 is written as 

Ü3(x2,X3,s) = -Re7(A3e^X3S+A4e-C3X3S)eis<o|x2lsdcö 
71        0 

(5.1) 

The Cagniard paths for Eq. 5.1 are defined by 

a) C,1x3-ia{x2\ = T , 

b) £3X3-i<ö|x2| = T , 

T = real and positve . 

(5.2) 
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The parametric equations representing the Cagniard path are obtained by substituting 

Eqs. 4.17 into Eqs. 5.2 and squaring twice to eliminate the radicals. This procedure 

yields a forth order equation for co of the form, 

A(0)(D4 + B(9, T)co3 + C(9, T)co2 + D(9, T)ro + E(8, T) = 0, 

A(9) = F(G) + 4aß-y2 , 
8iaTsin(e)F(9) B(9,T) = - 

a2T2sin2(9) 

cos2(9) 

V16*     4 
cos4(9) 

(e,T) 
cos2(9) 

C(9,T) = 2F(9)G(9,T)-16- j-^-2(a + l)y + 4a(ß+l) , 
5  ( 

D(9,T) = 8iaTsin(
2
9)G(e-T) . (5-3) 

\2 E(9, T) = G(9, T) - (a+If + 4a , 

2asin2(9)+ycos2(9) 
cos2(9) j 

2     /T .     x 2 

G(9,T)=2aT-(1+
2
a)cOS(9) 

cos2(9) 

Equation 5.3 has four complex roots, ©u&2,®3, and 04, which occur in complex 

conjugate pairs. The roots labeled &^ and 03 correspond to the physical sheets of the 

Riemann surface. For the special case of an isotropic solid, a=ß=y/2, Eq. 5.3 can be 

factored into two second order equations that can be solved analytically. For the 

general anisotropic case, the roots of Eq. 5.3 must be found numerically. The 

program CAGNIARD was used to find the roots to Eq. 5.3. The computer code 

along with a complete description is given in Appendix A. 
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It was found that the character of the Cagniard paths was dictated to a large 

extent by the location of the lacunas relative to the observation direction. Thus, all 

crystals belonging to a particular class (I-V) will have Cagniard paths with similar 

characteristics. Discussing the Cagniard paths as a function of observation angle for 

all the crystals that exhibit transverse isotropy would be a difficult task. Instead three 

representative examples will be discussed. The first example is Hafnium. It was 

chosen because the wave-front curve for Hafnium does not have any lacunas. The 

remaining examples, Beryl and Zinc, have lacunas off the symmetry axis and aligned 

with the symmetry axis, respectively. Before discussing the Cagniard paths in detail, 

the location of the branch points and singularities associated with U3 will be 

identified. From Eq. 4.22, the branch points for £(©) arise in two distinct ways, 

1) «co) = 0, 

2) yö)2+(a+l)±V*(rä)=0 

The branch points originating from (1) are 

(5.4) 

Y(a + l)-2a(ß+l)±2Va(a + ß-Y)(l + aß-Y) ,- ^ 
(4ctß-y ) 

while the branch points originating from (2) are given by 
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(ö = 

Vß 
(D=l (5.6) 

The only pole singularity associated with 113 is the Rayleigh pole, the physical root of 

Eq. 4.26. With the aid of Table 4.1, the branch points resulting from (1) and (2) and 

the location of the Rayleigh pole for the example crystals are listed in Table 5.1. 

Tabel 5.1. Location of branch points and Rayleigh pole. 

Crystal G>+ G)_ G)=i ©=!/-# i<% 

Hafnium 0.4026 - 0.726H 0.4026 + 0.726H i 0.55471 1.0465i 

Beryl 0.1915-0.5063i 0.1915 + 0.5063i i 0.49331 1.07191 

Zinc 0.1260 1.00071 i 0.48971 1.1386i 

(5.1.1) CAGNIARD PATH FOR HAFNIUM 

The wave-front curve for Hafnium, class (I), is shown in Fig 5.2. The 

wavefront for the R+ branch, like an isotropic material, has no cusp. Since the 

wavefront curve for Hafnium has similar characteristics with the wavefront curve for 

an isotropic material, it is also expected that the Cagniard paths will have similar 

characteristics. Figures 5.3-5.5 illustrate the dependence of the Cagniard path on the 

detection angle, 9. The path shown in Fig. 5.3 is for a detection angle of 25°. For a 

detection angle of 45°, Fig. 5.4 shows that the integration contour corresponding to 

the R+ branch is deformed by the branch 
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Fig. 5.2. Wave-front curve for Hafnium. 

cut starting at co = i / ^ß • In Figure 5.5, the Cagniard path encircles the branch 

points, co. and -co+. It should be noted that the behavior of the Cagniard path in Figs. 

5.4, and 5.5 is not seen in isotropic materials since the branch points corresponding to 

isotropic materials are purely imaginary. 
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Fig. 5.3. Cagniard path for Hafnium (9=25°). The dashed line represents the portion 
of the Cagniard path on the second sheet of the Riemann surface. 
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Fig. 5.4. Cagniard path for Hafnium (0=45°). The dashed line represents the portion 
of the Cagniard path on the second sheet of the Riemann surface. 
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Fig. 5.5. Cagniard path for Hafnium (0=47.5°). The dashed line represents the 
portion of the Cagniard path on the second sheet of the Riemann surface. 
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(5.1.2) CAGNIARD PATH FOR BERYL 

In Fig. 5.6 the wave-front curve for Beryl is shown. Figure 5.6 demonstrates 

that, for Beryl, three natural subdivisions exist. The first division corresponds to the 

angular region between the z-axis and the inside vertex of the lacuna. Observation 

directions that intersect the lacuna make up the second division. The third division 

corresponds to an angular region between the outside vertex of the lacuna and the y- 

axis. 

120, 
9 02.5 

2 
-^60 

150/ 
1.5s 

\30 

o^\ 

180 

21 Ö\ /^O 

24IT -^300 

0  (Z-axis) 

Enlargement of lacuna 

270 

Fig. 5.6. Wave-front curve for Beryl. Enlargement of R+ branch shown in insert. 

Numerical values for the angular boundaries of these divisions are given below. 

(i)    0°<e<41.2°, 

(ii)   41.2°<8<46.7° , 

(iii) 46.7°<e<90°. 

(5.7) 
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Figures 5.7-5.9 illustrate the dependence of the Cagniard path on the detection angle. 

The path shown in Fig. 5.7 is for an angle of 30°, which lies in region (i). Figures 5.8 

and 5.9 are for detection angles that lie in regions (ii) and (iii) respectively. 
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Fig. 5.7. Cagniard path for Beryl (0=35°). The dashed line represents the portion of 
the Cagniard path on the second sheet of the Riemann surface. 
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Fig 5.8. Cagniard path for Beryl (9=45°). The dashed line represents the portion of 
the Cagniard path on the second sheet of the Riemann surface 
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Fig 5.9. Cagniard path for Beryl (0=48°). The dashed line represents the portion of 
the Cagniard path on the second sheet of the Riemann surface. 

(5.1.3) CAGNIARD PATH FOR ZINC 

The wavefront for zinc, class (IV), is shown in Fig. 5.10. The lacunas in the R+ 

branch are centered along the symmetry axis and along the bounding surface. The 

lacunas that intersect the bounding surface are very small and must be viewed under 

magnification. Figure 5.11 shows the Cagniard path for an observation angle that 

intersects the lacuna along the symmetry axis while Fig. 5.12 shows the Cagniard 

path for an angular region outside the lacuna. 
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Fig. 5.10. Wave-front curve for Zinc. Enlargement of R+ branch shown in insert. 
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Fig. 5.11. Cagniard path for zinc (0=10°). The dashed line represents the portion of 
the Cagniard path on the second sheet of the Riemann surface. 
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Fig. 5.12. Cagniard path for zinc (0=35°). Dashed line represents the portion of the 
Cagniard path on the second sheet of the Riemann surface. 

(5.1.4) DETAILS OF INVERSION FOR ZINC 

With the Cagniard path numerically defined, the inversion of the transformed 

displacements, Eq. 5.1, may be performed. In this section, a detailed analysis of the 

inversion for the off-epicentral vertical displacement for zinc is given. Figures 5.13 

and 5.14 show an enlarged view of the integration contours for zinc when the 

observation angle is 10°. The Cagniard path plotted in Fig. 5.13 corresponds to Eq. 

5.2a while the Cagniard path plotted in Fig. 5.14 corresponds to Eq. 5.2b. In order to 

keep the notation consistent with previous chapters, Eq. 5.1 is rewritten as 
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U3(©JX3,s) = -Re{l1+I3} , 
71 

I, = ]A3e^*H«ta,    I3 = jA4e-sfex3+i<a|x2i)dcö . 
(5.8) 

With the aid of Cauchy's theorem and the change of variables given in Eq. 5.2, the 

Fourier inversion corresponding to Ij and I3 in Eq. 5.8 can be written as 

t2 »3 
Il=   Jill + Jill + Jill, 

t, t, 

I3 -  JI33 + JI33   » 

ln =A3e   s—ax , 
dx 

T       .    _ST da , 
I« =A4e   s—ax . L33 _ ■fv4' 

dv 

(5.9) 

0.1 

0 

-0.1 - 

-0.2 

-0.3 

-0.4 

-0.5 

-0.6 

■w 

h 
7~~5&  

r \           i' 

t3 

^^"^^^l r, 

-0.2 0.2 0.4 0.6 0.8 

Fig. 5.13. Cagniard path correspond to Eq. 5.2b. The times, tl912, and t3 correspond 
to wave arrivals. 
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It should be noted that the portion of the contour along the imaginary axis does not 

contribute to the displacement since the integrand is totally imaginary. Applying the 

inverse Laplace transform operator to Eq. 5.8 gives 

u(x2,x3,T) = [H(T-t1)-H(T-t2)]A3
a(0(tl">t2) + 

ox 

H(x-t3)A3^+H(T-t4)A4^^) 

dx OX 

(5.10) 
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Fig.5.14. Cagniard path correspond to Eq. 5.2b. The times X^ and t4 correspond to 
wave arrivals. 
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The off epicentral vertical displacement in zinc for a detection angle of 10° is shown 

in Fig. 5.15. The characteristics of the waveform shown in Fig. 5.15 are similar to 

the epicentral waveform shown in Fig. 4.7. The primary difference is the splitting of 

wave resulting from the conical portion of the slowness surface. Figure 5.10 shows 

that for observation points along the symmetry axis, the two conical pulses travel at 

the same velocity, while for points off the epicentral axis, the two conical pulses 

travel at different velocities. 
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Fig. 5.15. Theoretical displacement for off epicentral waves generated in zinc with a 
line source. The observation angle is 10°. 

(5.2) BURIED SOURCE 

Spatial variations in the mechanical and optical properties of a composite 

material can have a pronounced effect on die acoustic signature resulting from pulsed 

laser irradiation. The purpose of this section is to address the effects of optical 
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heterogeneity. The solution for a point source located on the bounding surface can 

serve as a Green's function for modeling the effects lateral variations in optical 

properties. However, a buried source must be considered in order to develop a 

Green's function suitable for modeling arbitrary absorption characteristics in two 

dimensions. Hence, the focus of this section is modeling the effects of sub-surface 

absorption. The problem geometry, shown in Fig. 5.16, involves a buried line source 

in a transversely isotropic half-space where the bounding plane is a plane of isotropy. 

Source 

Plane of 
isotropy 

Detection Location' 

Fig. 16. Problem geometry for a buried line source. 

The equations of motion for this problem are given as 

ßu2>22 +u2;33-u2Tr +KU323 = F28'(x2)8(x3-a)H(-c) , 

^2,23 + U3,22 +ttU3,33 -U
3,TT = F3

5(X2)8'(x3 ~a)H(x) . 
(5.11) 
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The stress free boundary conditions are stated as follows: 

(T33(X2,0,T) = CUI3J      +(K-1)U2>2       = 0 , 
X3_°_ xH> (5.12) 

G7*(X7,0,T) = U7T\      + UO->        =0. 
23V   2>   »   J 2>3lx3=0 3'2lx3=0 

The solution proceeds with the aid of integral transform techniques. The transformed 

equations of motion are expressed as 

[_ßtl2_k2_s2] ( ü2(T1JX3JS)) .^ ü3(n,X3,s))=^S.eika , 

ikF (5,13) 

-tiKk( u2(ri,x3,s))+[-Ti2-ak2-s2J ( u3(r|,x3,s))=—2-e** , 

where a bar denotes a transformed displacement. The Fourier-Laplace transform 

operator is defined as 

G2/3(Ti,k,s)= J Ju2/3(x2,x3,T)e-(iT1X2+ikX3+ST)dridkdT . (5.14) 
-ooO 

The following substitution is made so as to facilitate the Cagniard inversion 

technique: 

k = is£ ,     r| = s<a . (5.15) 
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The homogeneous solution of Eq. 5.13 is given by 

üf)=A1e^lX3+A2e-^X3 , 

üW=A3e^X3+A4e^X3 . 
(5.16) 

where C,m are the physical roots to the slowness equation. The relation between the 

coefficients, given in Eq. 4.19, will be restated here for convenience, 

Aj — A3 A3 — A3 
OC?-<P2-1 

iK©^! 

"aC2-©2-! 

«C©£3 

(5.17) 

A formal expression for the particular solution is obtained by algebraically 

uncoupling Eqs. 5.13, 

- t     r   \     1G) (F2(cö2-aC2+l)+F3<
2V -as£ 

u3 (co,£,s) = -=- 
s 

s2LaC4-C2((a + l)+7©2) + (ßö>4+(ß+l)<ö2+l)J ' 

fe(ßm2-C2+l)-Ifo2K)B-c 

a;4 - C2((a +1)+y©2) + (ß©4 + (ß+l)©2 +1) 

(5.18) 
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Dependence on x3 is recovered by using a table of partial fractions, 

r(P) u2 
;(ffl,x3,s) = Ri(m,;,s)Nj(x3) + R3((D,C,s)N3(x3) , 

üf)(ö>,x3,s) = S1((D,Cs)[d(N1(x3))/dx3]+S3(a),C,s)[d(N3(x3))/dx3]5 

R1(<ö,C),S) = 

R3(a,C,s) = 

S!((ö,CS) = 

CO 

-2     i-2> 
2s(Ci-C3> 

—ico 

F^+l-aCJVF^2 

2s(tf-^) 

l 

S3(o,C,s) = 

2s2(C2-tf) 

-i 

2s2(C3-tf) 

Ci 

F2(©2 + ] l-aC3
2)+F3KC3

2" 

C3 

~F3(ßa)2- -Cf+i)- -F2Q)2K 

& 

"F3(ßG)2- -Cf+i)- -F2(ö
2K 

(5.19) 

N1(x3) = e"s?1l(X3-a)l,N3(x3) = e-^l(X3-a) 

The coefficients A3 and A4 are determined by requiring that the solution to Eq. 5.11, 

homogeneous and particular, satisfy the boundary conditions, Eq. 5.12, 

A3 = 

A4 = 

Det (M) 

D 

Det (O) 

D 

(5.20) 

where D is the Rayleigh denominator given in Eq. 4.20, and M and O are given by 
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M = 
Mn    M12 

M21   M22 
0 = 

On    012 

P21   o22_ 

Mn =-[a(sis
2C1V

s^'a +S2s
2^e-^)+isG)(K-l)(R1e^a +R3e-^a)], 

M12 = -as£3 +isG)(K-l)A4 , 

M21 =-[(RisCie-s;ia+R2sC3e-sC3a)+ isdftt^+ S&3***t, 

M22 =-A4£3s+isG) , 

On =-as^j +is(Jo(K-l)A3 , 

012 = -[a(slS
2^2e-^a +S2s2C3

2e-^a)+isß)(K-l)(R1e-^a +R3e-S^a)], 

021 =-A3^1s+isG> , 

022 =-[(RisCi<fs?ia +R2sC3e-s^a)+isa)(s1s^e-^a +S3sC3e-^a)], 

(5.21) 

where X3/4 are defined in Eq. 5.17. Explicit expressions for the coefficients in Eq. 

5.20 were obtained using a symbolic manipulator, and are not given in this 

manuscript due to length considerations. 

In order to gain a clear understanding of the Cagniard inversion procedure for a 

buried line-source, where the observation point is beneath the source, the solution is 

re-written as 
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ü2(G>, x3, s) = Rj(DS)+ R3(DL)+ SS, + LL! + S^ + LSj , 

ü3((ö,X3,s) = -isdS^DSj-isCsS^DI^+SS;, +LL3 +SL3 +LS3 , 

DL = e^3(X3_a) , 

DS = e~<l(X3"a) , 

SSi=SSCie-^&a+5lX3), (5.22) 

LL1=LLqe-,(&8+5jXj), 

SLi=SLQe"f(5,a+5,X3), 

LSä=LSC1e-(fe8+&X3), 

i = l,3, 

where DS, DL, SS, LL, SL, LS, stand for direct shear, direct longitudinal, shear 

reflected as shear, longitudinal reflected as longitudinal, shear reflected as 

longitudinal, and longitudinal reflected as shear respectively. 

It is interesting to note that if the material considered is isotropic, the DS, SS, and 

SL components of the waveform are identically zero. The vanishing of these 

components can be best understood by considering the symmetry of the source and 

the material. If the source has zero curl and if the material is thermally and 

elastically isotropic, then the terms Rx and Su given in Eq. 5.19, vanish. 

eük^re)=o 

F2=F3 , 

^=(co2+l),     Ö=((OUD
2
+1)/O), 

R1=S1=0. 

(5.23) 
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The various Cagniard paths corresponding to the inversion of Eq. 5.21 can be 

written as 

a) £iX3-Cia = T, 

b) C3x3-C3a = T, 

c) Clx3 + £la = T> 

d) ;1x3+C1a = t, (5.24) 

e) Cslx3+£)3a = T , 

f) C3x3+Cia = T , 

T = real and positive . 

The Cagniard paths labeled a, b, c, and d in Eq. 5.24 can be obtained analytically, 

while the Cagniard paths labeled e and f must be obtained numerically.   As was the 

case for solutions along the epicentral axis, Section 4.3, the character of the Cagniard 

paths, specified in Eq. 5.24, is dictated by the class to which the crystal belongs,    (i- 

iii). For materials belonging to class (i), the Cagniard paths are purely real, while the 

Cagniard paths for class (ii) and class (iii) materials are complex. It would be a 

formidable task to describe the Cagniard paths, corresponding to a buried-source, for 

all materials that exhibit transverse isotropy. In addition, it is of little utility to study 

solutions for buried sources in strongly absorbing transversely isotropic materials, 

such as zinc and titanium. The author has chosen Beryl to serve as an example 

crystal. Beryl is weakly absorbing in the visible and near infrared region of the 

spectrum, thus exhibiting the effects of sub-surface absorption. In Fig. 5.17., the 

Cagniard paths for Beryl are plotted versus a dimensionless time parameter, T=T/X3. 
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Fig. 5.17. Various Cagniard paths for a buried line-source in Beryl. 

The ratio of the observation depth to the source depth, R^ was set to 10 to ensure 

that all the Cagniard paths could be easily discerned. Figure 5.18 shows the 

epicentral displacement due to a buried line-source and a surface line source in Beryl. 

A value of 5000 for R^was used to generate the data in Fig. 5.18. Thus, if the 

sample thickness is 1 cm, the source depth would be 2 urn. The notable difference 

between the surface source and a buried source waveforms is the presence of a 

precursor spike that arrives at the longitudinal velocity. 
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J(t) 

1.25 1.5 

Fig. 5.18. Epicentral displacement waveforms due to a surface and a buried line 
source in Beryl. 

The physical origin of this precursor was described by Telschow and Conant [8] and 

can be easily understood by considering plane wave with a step profile generated some 

distance beneath the free surface of an elastic half space. The wave will consist of 

forward and backward propagation components as shown in Fig. 5.19. The forward 

propagation wave has a positive displacement while the backward propagating wave 

has a negative displacement. At t=h/c, the negative displacement wave front strikes 

the surface and is reflected. Because the surface is stress free, the reflected wave is 

also a negative displacement wave. At t=2h/c, the negative displacement of all the 

particles in the region z<h has doubled. As the wave front of the reflected wave 

propagates further into the half-space, its negative displacement cancels the positive 

displacement previously caused by the forward propagating wave. The net result is 
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that for t>2h/c, the material in the region z<h has moved as a rigid body in the 

negative z direction, wHle in the region z>h, a displacement "block" of length 2h 

propagates toward infeity with velocity c. 

t<h/c 

h/c=t<2h/c 

2h 

(a) 

(b) 

(c) 

t>2h/c 

Fig, 5.19- Spatial profile of the displacement at different times produced from a 
plannar temperature source at z-h in a elastic half-space. 
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CHAPTER 6 

The are many methods used for laser generation and laser detection of 

ultrasound. Laser generation of ultrasound is usually achieved with a Q-switched or 

long-pulsed laser. The influence of the laser parameters, wavelength and pulsed 

duration, on the generation of ultrasound was addressed in Chapter Two. Laser 

detection of ultrasound includes interferometric, beam deflection, and acousto-optic 

techniques [46]. Techniques that rely on coupling between the acoustic and optic 

fields have the advantage of probing the sample's interior. The major drawback is 

that acousto-optic techniques require high coupling coefficients and transparent 

samples. Beam deflection techniques are inexpensive, but they require highly 

reflective surfaces and the sensitivity is a function of the experimental geometry (i.e. 

angle of incidence, spot size, etc.). Interferometric techniques have poor sensitivity 

compared to piezoelectric devices, and usually require some form of electronic 

feedback to insure peak sensitivity. However, interferometric detection does offer a 

number of advantages such as, high spatial resolution without compromising 

sensitivity, measurements that are directly related to laser wavelength, detection off 

rough surfaces, and a flat broadband frequency response. 

(6.1) EXPERIMENTAL SETUP 

The experimental data sets reproduced in this manuscript were generated 

using a Nd: YAG Q-switched laser. The laser was a Continuum model Surelite II, 

operating at 1.064 urn. The transverse spatial profile was Gaussian and the temporal 
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pulse length was approximately 10 ns. The energy per pulse could be varied between 

5 mJ and 600 mJ. The ultrasonic disturbance was detected with a skew-stabilized 

Michelson interferometer operating at 632.8 nm (see appendix Al). The upper limit 

of the bandwidth was determined to a large extent by the frequency response of the 

photodetectors in the interferometer. The photodetectors were manufactured by 

EG&G (product designation FFD-040) and have a specified upper bandwidth limit of 

150 MHz into a 50 Q load. The lower limit of the bandwidth, estimated at 1 kHz, 

was dictated by the characteristics of the stabilization circuit. 

There were two basic experimental configuration used, generation and 

detection on the same side of the sample, Fig. 6.1, and generation and detection on 

the opposite side of the sample, Fig. 6.2. 

Nd:YAG Pulsed Laser 

r—H--> 
Data Acquistion 
and storage system 

Lens combination 

1064 nm Band 
Reject Filter 

Translation 
Stage 

Michelson-type 
Interferometer 

Fig. 6.1. Experimental setup used for same side detection. A Nd:YAG laser is used 
to generated the ultrasound and a Michelson interferometer is used to detect the 
ultrasound. 
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For same side detection, care had to be taken so as not to saturate the photodiodes in 

the interferometer with light from the Nd:YAG laser that had scattered off the sample 

surface. A beam stop was used to collect the specular component of the scattered 

light while a 1064 nm band reject filter was used to block the remaining scattered 

light from reaching the photodiodes. 

Nd:YAG Pulsed Laser 

f9*- 
Data Acquistion 
and storage system 

Lens combination 

Translation 
A Stage 

D 
0 

Michelson-type 
Interferometer 

Fig. 6.2. Experimental setup used for opposite side detection. A Nd: YAG laser is 
used to generated the ultrasound and a Michelson interferometer is used to detect the 
ultrasound. 

Two source configurations were used to test the theoretical prediction, a point source 

and a line source. For a point source, a single convex lens was used to focus the 

generation beam. Using a piece of laser burn paper, the beam diameter at the 

sample's surface was estimated to be 200 urn. In order to approximate an infinite 

line source, a convex/concave lens combination was used as a telescope to expand the 

beam while a cylindrical lens was then used to focus the generation beam to a line. 
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The approximate line dimensions, as measured from a piece of laser burn paper, 

where 20mm x 0.2mm. 

(6.2) SAMPLE SPECIFICATION 

As mentioned earlier in this manuscript, the materials that were studied 

experimentally were samples of single crystal zinc and unidirectional carbon fiber 

epoxy composites. Table 6.1 list the sample geometry and orientation for the 

experiments described in this manuscript. 

Table 6.1. Sample size, orientation and detection scheme. 

MATERIAL SIZE (mm) ORIENTAION DETECTION SCHEME 

Zinc r=30, d=60 c-axis -L surface Same side 

Zinc r=30, d=10 c-axis _L surface Opposite side                      | 

Composite 6x6x1 fibers J_ surface Same side                           | 

Composite 6x6x2 fiber || surface Opposite side                      | 

Composite 6x6x2 fibers J. surface Same side 

Composite 6x6x2 fiber || surface Opposite side 

Composite 6x6x3 fibers ± surface Same side 
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The zinc samples were grown from the melt by Dr. Robert E. Green Jr. The 

zinc specimens were cleaved along basal planes and then polished using Buehler 

Carbimet paper to produce a mirror like surface. The crystal orientation was 

determined using x-ray diffraction. The polished surface was perpendicular to the x- 

ray beam resulting in a diffraction pattern that had six-fold symmetry, confirming 

that the polished surface coincided with the basal plane. The cylindrical zinc sample 

had a radius of 15mm and a length of 60mm for same side detection, while sample 

used for detection of epicentral waves had a radius of 15mm and a length of 10mm. 

The carbon fiber epoxy composite samples were cut from a thick specimen of 

carbon fiber epoxy made by Dr. Chris Byrne. The prepreg was produced by Fiberite, 

product designation Hy-E 2048A1 A. The carbon fiber, designation 20 A, is a high 

tensile strength pitch based fiber and the resin, designation 948A1, is a short-cure- 

time epoxy resin. The composite samples were cut to have a plate-like geometry 

with the plate surface measuring 6 cm x 6 cm. The plates were cut to have a 

thickness of 1cm, 2cm, or 3cm. The fibers were oriented either parallel or 

perpendicular to the plate surface. Further discussion regarding experimental 

parameters or material specification will be given in the next chapter where the 

experimental and theoretical results are compared. 
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CHAPTER 7 

In the present chapter, theory will be compared to experimental results obtained 

from samples of single crystal zinc and unidirectional graphite epoxy. In Chapters 4 

and 5, analytical and numerical results were developed for a source with a delta 

function temporal profile in a half space. Before a direct comparison between 

experiment and theory can be made, the temporal transfer function representing the 

experimental setup must be addressed as well as reflection off the back surface of the 

sample. 

(7.1) REGARDING THE TEMPORAL TRANSFER FUNCTION 

The effects of a laser pulse with finite duration and the frequency response of the 

interferometer can be modeled using the Duhamel formula as follows: 

u(xi,t) = u5(xi,t)®P(t)®C(t)<8>E(t), (7.1) 

where <8> represents the convolution operation, u§ is the solution for a source that has 

a delta function temporal profile, P(t) is the temporal profile of the laser pulse, C(t) 

is the delta function response of the interferometer, and E(t) represents temporal 

broadening due to a detection spot with finite size. The temporal profile of the laser 

is expressed as [47]. 

133 



117 

P(t) = 
ftf\ 

(7.2) 

where T is the laser pulse width, ~10ns. The exact functional form of C(t) is not 

known by the author but the frequency response of the interferometer is determined 

to a large extend by the frequency response of the photodetectors in the 

interferometer (Aß =150 MHz). The function E(t) is representative of the finite 

transit time of the acoustic wave across the detection spot. Thus, the form of E(t) 

depends on detection scheme, (i.e. same side or opposite side detection). Figure 7.1 

demonstrates the effects of a finite detection spot for detection along the symmetry 

axis. 

Point Source 

Detection Spot 

Fig. 7.1 Schematic showing pulse spreading caused by a finite detection spot. 
Detection is along the epicentral axis. 

Since the detection spot has finite size, acoustic energy emanating from a point 

source arrives at different portions of the detection spot at different times. For 

detection along the symmetry axis, E(t) is given by 
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E(t) = Aj27re(-r /N >rdr = -7tAN2e^/N/>, (7.3) 

where A is a normalization constant and N, the pulse width, is related to the radius of 

the beam at half intensity, THM, as follows: 

NHä (7-4) 

By expressing time as 

r[Vz2+l-z) 
v (7-5) 

z = z/r, 

where v is the acoustic velocity, the expression for E(t) can be rewritten as 

E(t) = 7IAN2e(-t2/N2), 

N = NV\2z2 +1 - 2zVz2+l), 
(7.6) 

where N is the modified pulse width. For example, N=10ns for a detection spot 

with a FWHM of 1mm, and an acoustic velocity of 3 mm/us. It should be noted that 

it was assumed that the amplitude of the acoustic disturbance was constant across the 

detection spot. This assumption is valid for large values of z. 
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In order to develop E(t) for same side detection, consider a surface wave with 

plane phase fronts that are perpendicular to the free surface as shown in fig. 7.2. 

Line Source 

Half Space 

Fig. 7.2 Schematic showing pulse spreading caused by a finite detection spot. 
Detection and generation on same side of sample. 

For same side detection, E(t) takes the form, 

E(t) = Ae<-t2/N2), (7.7) 

where N for same side detection is defined by 

N^SHM / L 
v "Vln(l/2) 

(7.8) 
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For a detection spot with a FWHM of 1mm and an acoustic velocity of 

3 mm/us, N =0.20 us. It should be noted that while this is an exact treatment for a 

line source, it serves as an approximation for a point source. For a point source, the 

approximation becomes more accurate as the source/receiver distance increases. 

For detection of surface waves, the temporal broadening of the signal is 

dominated by E(t), while E(t) and P(t) have similar pulse widths for detection along 

the epicentral axis. In this manuscript, broadening effects were modeled by 

convolving the theoretical displacement with a Gaussian having the appropriate 

pulse width. This is a good approximation for same side detection but perhaps only 

a fair approximation for detection along the epicentral axis. Since the form of C(t) 

not known, including P(t) in Eq. 7.1 would not necessarily enhance the comparison 

between theory and experiment. 

(7.2) BACK-FACE REFLECTION COEFFICIENTS 

Bulk waves, with velocity v, propagating in a sample with a plate-geometry 

experience reflections off the traction free surfaces of the sample. Each time the 

wave reflects off the plate surface, the amplitude and temporal character of the wave 

is modified. The modification to the wave is described by reflection coefficients, 

which are a function of observation angle. Solutions that are germane for a plate 

with two parallel traction free boundaries, X3=0, X3=h, can be obtained from 

solutions for a half-space given in Chapter 4 and Chapter 5 with the aid of the 

appropriate reflection coefficients. As an example, consider the transformed 
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displacement due to a laser line source at the back surface of the plate.   The out-of- 

plane displacement for h/v>t>2h/v is given by, 

ubs(r,,h,s) = (A3 +SS3hA3 +SL3hA3>-^ +(A4 +LL3hA4 + LS3hA4)e^h,        (7.9) 

where A3/4 are defined in Eq. 4.20, and the reflection coefficients for the back 

surface are obtained following the procedure preceding Eq. 5.21.  Ideally this 

development should be used when comparing experiment and theory since the 

displacement at the back surface is a superposition of the incident wave and the 

reflected wave. For the isotropic case, Rose [5] shows that along the epicentral 

direction, reflection primarily alters the amplitude of the reflected wave. It is 

assumed that a similar result holds for an anisotropic material. Since the emphasis in 

this manuscript is to compare the temporal character between experiment and theory, 

the effect of reflection off the back surface will not be taken into account. 

(7.3) RESULTS AND DISCUSSION (ZINC) 

In Fig. 7.3 a comparison between theory and experiment for same side detection 

is presented for single crystal zinc (c-axis perpendicular to surface). The 

experimental curve is single shot data and the source/receiver separation was 9.1 

mm. The theoretical result in Fig. 7.3 is convolved with a Gaussian function 

( N =310 ns) in order to mimic broadening effects. The first disturbance turns on and 

off at times corresponding to the arrival of the longitudinal wave and shear wave 

138 



122 

respectively. The largest disturbance corresponds to the Rayleigh pole and is in the 

form of a traveling delta function. 

0.5- 

am -0.5- 

-1.5- 

Fig. 73. Comparison between experiment and theory for surface waves in zinc. 

The amplitude of the theoretical curve was scaled to match the experimental 

amplitude. Since the data was single shot, comparison of theoretical and 

experimental amplitudes allows an estimate of the optical reflection coefficient. The 

theoretical amplitude, given in Eq. 4.38, is expressed by 

AR2y!dgh ~ FVr<lo 

1 
F = - 

pC 
B 
C44 

JC^Jp, 

5B0_K)+B22.a 

C44 

(7.10) 
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where q0 represents the linear energy density. The data shown in Fig. 7.3 was 

produced by a 37 mJ pulse distributed over 1 em. Scaling the theoretical amplitude 

of the Rayieigh wave to match the experimental data, the reflectivity at the sample's 

surface was estimated to be 90%, which is comparable to published values for zinc. 

It should be noted that the accuracy of these results decreases as the aspect ratio, the 

ratio between the line source length and the source receiver distance, decreases. 

Figure 7.4 compares theory and experiment for displacement along the epicentral 

axis for a sample of single crystal zinc (c-axis perpendicular to free surface). 
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Fig. 7.4. Comparison between experiment and theory for displacements along the 
epicentral axis. 

The source/receiver distance was 5mm and the signal was averaged 25 times to 

improve the signal-to-noise ratio. Again, the theoretical result was convolved with a 

Gaussian ( N =20 ns).  Zinc is a class three crystal and as a result, the displacement 
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character differs markedly from its Isotropie counterpart. In a fashion similar to that 

of the surface wave case, the first disturbance turns on and off at times 

corresponding to the arrival of the longitudinal wave, tj, and shear wave, tg, 

respectively. After %, the displacement is identically zero until tiie arrival of the 

majority of the acoustic energy at t~. The disturbance that arrives a U results from a 

reciprocal square root singularity and is referred to as phonon focusing [45]- 

Figure 7.5 shows a comparison between experiment and theory for axial 

displacements along the epicentral axis for a point source in zinc (c-axis 

perpendicular to surface). 

mV 

Fig. 7.5. Comparison between experiment and theory for axial displacements along 
the epicentral axis resulting from a point source. 
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The theoretical result shown in Fig. 7.5 was convolved with a Gaussian pulse 

(N=20 as). The experimental data in Fig. 7.5 confirms that, unlike a line source, the 

waveform for a point source corresponding to the interior of the lacuna is non-zero. 

A comparison between experiment and theory for observation off the symmetry 

axis, 6=10°, is shown in Fig. 7.6 (c-axis perpendicular to surface). The source is a 

surface line source. The experimental data was average 25 times to improve the 

signal-to-noise ratio and the theoretical result was convolved with a Gaussian 

(N=20 ns) to mimic broadening effects. The experimental data in Fig. 7.6 clearly 

shows the splitting of the wave caused by the conical portion of the slowness 

surface. 
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Fig. 7.6. Comparison between experiment and theory for axial displacements off the 
epicentral axis. The observation angle is 10°. 
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(7.4) RESULTS AND DISCUSSION (GRAPHITE EPOXY) 

Before predicting the displacement waveforms caused by a laser source in 

unidirectional carbon fiber epoxy composites, the elastic constants must be 

determined. As was mentioned in chapter 2, unidirectional carbon fiber epoxy is 

transversely isotropic, hence, there are five unknown elastic constants. There are a 

number of ultrasonic techniques currently used to determine the elastic constants in 

anisotropic materials. Most of these techniques involve comparing the theoretical 

and experimentally obtained slowness curves. T.T. Wu and Z.H. Ho [25], have 

determined the elastic constants in unidirectional graphite epoxy by numerically 

fitting the theoretical slowness curves to the slowness curve obtained 

experimentally. This method has two drawbacks. First, the researcher must identify 

wave front arrivals as a function of angle in a very complicated waveform. Second, 

since the theoretical slowness surface is matched to the experimental slowness 

surface through an iterative method, a numerical algorithm must be used. The 

method proposed in this manuscript for determining the elastic constants involves 

measuring five acou?  z velocities. 

Figure 7.7 shows an epicentral waveform resulting from a laser line source in a 

sample of carbon fiber epoxy composite. As shown on the right hand side of Fig. 

7.7, the fibers are parallel to the surface and to the source. Since the displacements 

and the derivative of the displacements parallel to the line source vanish, the 

problem reduces to the isotropic case. 
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Fig. 7.7. Waveform and experimental geometry used for determination of elastic 
constants. The sample thickness is 12mm. 

The relation between the elastic constants and the acoustic velocity for this 

experimental setup is given by 

- BL vs = 
_ &_ /(c„-c12) 

P   V   p   ' 
(7.11) 

In Fig. 7.8, the waveform resulting from a laser point source is given. The fibers are 

parallel to the surface. The first arrival corresponds to the longitudinal wave and the 

second and third arrivals correspond to the fast and slow shear waves respectively. 

Equation 7.12 gives the relation between the elastic constants and the various 

acoustic velocities. 

vL=. (SL VSI=. 
■c 44 vS2=. 

'66 (7.12) 
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Fig. 7.8. Waveform and experimental geometry used for determination of elastic 
constants. The sample thickness is 12mm. 

Figure 7.9 shows the epicentral waveform resulting from a laser line source. The 

fibers are perpendicular to the sample surface. There are two reflections of the 

longitudinal wave before the arrival of the shear wave at vs=(C44/p)   • The 

magnitude of the shear wave at the wave front is proportional to the noise level, thus 

using the arrival of the shear wave for this experimental setup to determine C44 

would be difficult. 
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0 2 4       ^       6 8 10 
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Fig. 7.9. Waveform and experimental geometry used for determination of elastic 
constants. The sample thickness is 12mm. 
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Equation 7.12 gives the relation between the elastic constant, C33, and the velocity of 

the longitudinal wave for the experimental geometry given in Fig. 7.9. 

vL=   ^, (7.12) 

The remaining elastic constant, C13, can be determined by measuring the Rayleigh 

velocity in a direction perpendicular to the fibers. The roots of the Rayleigh 

equations are uniquely determined by knowledge of the Rayleigh velocity, Cn, C33, 

and C44. They are obtained by solving 

D = [2(1 -K)(ö4 + CD
2
) - (ya>2 + a)(co2 +1) - adC3]= 0 , (7.13) 

where a, y, and K are defined by Eq. 3.33, and co is the slowness. In Fig. 7.10 the 

out-of-plane surface displacement resulting from a laser line source is plotted. The 

fibers are perpendicül3f to the surface, giving the surface as the plane of isotropy. 

The first wave to arrive is a bulk wave traveling at the longitudinal velocity. The 

later arriving negative spike is the Rayleigh wave. Since the Rayleigh wave travels 

without dispersion, the Rayleigh velocity can be obtained by measuring the transit 

time between two detection spots. For more accurate time of flight results, two 

signals obtained at different detection spots could be autocorrelated. 
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mV 
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Fig. 7.10. Surface wave displacement wave form and experimental geometry. 

The measured Rayleigh velocity for the experimental geometry given in Fig. 7.10, 

1.54 mm/us, is only marginally smaller that the shear wave velocity, 1.56 mm/us, an 

artifact of the extreme anisotropy exhibited by the unidirectional carbon fiber epoxy 

composite sample. Table 7.1 lists the material properties of the carbon fiber epoxy 

composite, including the elastic constants. 

Table 7.1. A listing of the elastic constants and the density for unidirectional carbon 
fiber epoxy. 

CH-1.56X1011 dynes Ci2=l.06x10" dynes Ci3=2.17xl011 dynes 

€33=16.6x10" dynes C44=0.42xl011 dynes a=39.5 

ß=3.7 y=109 p=1.73 g/cm^ 

In Figs. 7.11 and 7.12, the slowness curves and the wavefront curves are plotted 

using the elastic constants listed in Table 7.1. Notice that the shear branch of the 
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wave front curve has a cuspidal triangle that does not intersect an axis of material 

symmetry, thus, the elastic character is defined by class V (see chapter 3). 

330 

Fig. 7.11. Normal curve for unidirectional carbon fiber epoxy sample. 
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Fig. 7.12. Wave front curve for unidirectional carbon fiber epoxy sample. 

Now that the elastic constants have been determined, comparison between 

experiment and theory can be made. Figure 7.132 compares experimental and 
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theoretical epicentral waveforms resulting from a laser line source oriented parallel 

to the fiber direction in a sample of carbon fiber epoxy composite. The theoretical 

signal was convolved with a Gaussian pulse { N =20ns) to account for pulse 

broadening effects. In addition, me experimental signal shown in Fig. 7.13 was 

signal averaged 25 times to improve the signal-to-noise ratio. As was the case for 

Fig. 7.7, this problem reduces to me isotropic case since the fibers are parallel to 

both the surface and the line source. The close comparison between experiment and 

theory for this experimental setup further bolsters the claim of transverse isotropy. 

mV   _2 - 

Fig. 7.13. Comparison between experiment and theory for a laser line source in 
carbon fiber epoxy composite. The fibers were oriented parallel to both the surface 
and the line source. 
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Figure 7.14 shows a comparison between experiment and theory for surface 

waves in a unidirection carbon fiber sample. The waves were generated with a laser 

line source and the fibers were oriented perpendicular to the sample surface. 

mV 

Fig. 7.14. Comparison between experiment and theory for surface waves generated 
with a laser line source in carbon fiber epoxy composite. The fibers were oriented 
perpendicular to the sample surface. 

The theoretical signal was convolved with a Gaussian pulse ( N =200ns) to model the 

effects of pulse broadening. It is of interest to note that the early arriving positive 

spike has a pulse width that is more narrow than that predicted by theory while the 

later arriving Rayleigh spike has a pulse width that is slightly wider than that 

predicted by theory. A possible explanation of this phenomenon will be given later 

in this chapter. 

The experimental epicentral waveform is compared with theory in Fig. 7.15. 

The signal was generated with a laser line source and the fibers were oriented 
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perpendicular to the surface. The direct longitudinal wave arrives at 1.2 us followed 

by two reflected longitudinal waves and the direct shear wave arriving at 7.6 us. 

Since two reflected longitudinal waves arrive at the detector before the shear arrival, 

a direct comparison between theory and experiment is not possible for this case. 
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Fig. 7.15. Comparison between experiment and theory for the epicentral 
displacement resulting from a laser line source. Fibers were oriented perpendicular 
to sample surface. 

Nevertheless, Fig. 7.15 illustrates the similarity between experiment and theory for 

the portion of the wave before the arrival of the first reflected longitudinal wave 

(3L). In addition, it should be noted that the theoretical curve confirms the fact that 

the magnitude of the shear wave is very small compared to the longitudinal wave. 

Figure, 7.16 shows a comparison between experiment and theory for epicentral 

displacement resulting from a laser point source. The fibers were oriented 

perpendicular to the sample surface. To facilitate a direct comparison, only the 
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portion of the wave arriving before the first reflected longitudinal arrival is plotted. 

The theoretical curve has been convolved with a Gaussian pulse(N=20 ns) to mimic 

the effect of temporal broadening. 

mV 

Fig. 7.16. Comparison between experiment and theory for the epicentral 
displacement resulting from a laser point source. Fibers were oriented perpendicular 
to sample surface. 

The experimental data suggest a step profile for the displacement while the 

theoretical data shows the displacement record reaching a maximum value and then 

dropping back to a steady state value. It was first thought that the discrepancy 

between experiment and theory for the point source case was a result of the finite 

dimension of the source. 
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In Fig. 7.17, a sequence of epicentral waves is plotted with the source diameter 

as a parameter. The radius at half maximum of the detection spot varied from 

0.18 cm to 0.14 cm. 
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Fig. 7.17. Epicentral waves resulting from a laser source with circular symmetry. 

Figure 7.17 illustrates that as the source radius decreases, the displacement 

waveform starts to develop a rippled structure. This structure may be caused by 

wave guiding effects. It would be instructive to continue the sequence shown in Fig. 

7.17 to smaller source radii, but as the spot size decreases it becomes more difficult 

to generate a detectable signal without ablating the material. In Fig. 7.18, an 

epicentral waveform resulting from an ablative source is plotted The generation 

spot size used to generate the data in this figure was approximately 50 p.m. 
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0.08 

Fig. 7.18. Epicentral waveform resulting from an ablative point source. The fibers 
are oriented perpendicular to the sample surface. 

If the ringing exhibited by the waveform in Fig. 7.18 is a result of wave-guiding 

effects, then the temporal character of the waveform should change with propagation 

distance. In Fig. 7.19, the temporal profiles of the direct longitudinal wave and the 

first reflected longitudinal wave (Fig. 7.18) are compared. 

The data shown in Fig. 7.19 tends to support the idea that the epicentral 

waveforms in unidirectional carbon fiber epoxy composite undergo the effects of 

dispersion. Questions regarding die origin of these dispersive effects are left for 

future work. One can speculate that the dispersive effects are an artifact of the 

material's heterogeneous character. In addition, it appears that the magnitude of the 

dispersive effect is a function of observation direction. For observation directions 

where the wave vector is perpendicular to the fiber direction, theory and experiment 

agreed well. One could further speculate that the dispersive effect in unidirectional 
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carbon epoxy composite is a function of the particle motion. This might also 

account for the disprepancy in pulse widths between experiment and theory shown in 

Fig. 7.14. The particle motion for the Rayleigh wave is retrograde elliptical while 

the surface slamming bulk wave is polarized either parallel or perpendicular to the 

wave vector. 

0.08 

-0.02 

Fig. 7.19. Comparison of temporal profile between direct longitudinal wave and 
first reflected longitudinal wave. The signal was produce with an ablative point 
source. 
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(7.4) CONCLUSIONS 

(7.4.1) SUMMERY OF PRESENTATION 

In this manuscript an investigation of laser-generated ultrasound in 

unidirectional carbon-fiber-reinforced epoxy was given. An elastodynamic theory 

that accounted for the elastic anisotropic nature of carbon-fiber epoxy was presented. 

It was found that the unidirectional carbon-fiber-reinforced samples could be 

modeled as transversely isotropic in planes perpendicular to the fiber direction. In 

the theoretical development, the effect of thermal diffusion was neglected and it was 

assumed that all the absorbed laser energy was deposited along a line or at a point 

located either beneath the sample surface or on the sample surface. A surface source 

is applicable in cases where the laser energy is absorbed within the first few 

nanometers of the exposed surface while a buried source is applicable for sub- 

surface absorbers such as embedded carbon fibers in an epoxy matrix. 

A formal solution of the problem was found using double (Fourier-Laplace) 

transforms. The Cagniard-de Hoop technique was used to analytically invert the 

transformed solution for the epicentral case as well as for the surface wave case. 

Solutions for a sub-surface source and for observation points mat are off the 

epicentral axis were obtained numerically. 

Experimental validation of the theory was performed using single crystal zinc 

and a unidirectional carbon epoxy sample. Zinc was used as a prototype to ensure 

that the theory correctly predicts the effects of elastic anisotropy. Like 

unidirectional carbon-fiber-reinforced epoxy, zinc is also transversely isotropic 

along planes perpendicular to the c-axis.  The zinc samples were cut to have the free 
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surface coincide with a plane of isotropy. Theoretical and experimental results for 

zinc agreed well for all the cases considered (displacements along the surface, 

epicentral direction and off-epicentral direction). 

The carbon-fiber samples were cut so that the fibers were perpendicular to the 

surface, thus giving the free surface as a plane of isotropy. It was found that the 

carbon-fiber epoxy samples exhibit homogeneous behavior when the wave vector is 

perpendicular to the fiber direction. When the wave vector is aligned with the fiber 

direction, as was the case for displacements along the epicentral axis, the waveform 

exhibits the effects of frequency-dependent dispersion. It was speculated that these 

dispersive effects are an artifact wave-guiding resulting from the material's 

heterogeneous character. 

(7.4.2) FUTURE WORK 

Before concluding, it is appropriate to discuss the direction of future work 

related to the material presented in this manuscript. The first area for future work 

would be to consider other crystal symmetries. In this manuscript, only materials 

that exhibited transverse isotropy were considered. In order to correctly model the 

effects of elastic anisotropy in carbon-fiber-reinforced epoxies that have fiber lay- 

ups other than unidirectional, additional crystal symmetries must be consider. 

The effects of heterogeneities must also be more thoroughly addressed. 

Experimental results suggested that wave-guiding by the carbon fibers in 

unidirectional carbon-fiber epoxy influences the displacement waveform along the 

epicentral axis. One of two methods could be used to model the effects of 

heterogeneities. The more heuristic approach would be to incorporate the effects of 
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heterogeneities, using first principles, into the model from the beginning. Perhaps 

the more realistic approach would be to apply a transfer function to the theoretical 

solution so that it matches the experimental results. The transfer function would 

account for frequency dependent attenuation and frequency dependent dispersion. 

This approach is phenomenological and as a result it would shed little light on the 

true nature of acoustic wave propagation through a heterogeneous material. 
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APPENDIX 1: PROGRAM LISTINGS 

Program Burdis 

% This m-file put together the displacement arrays defined in Burlincm in the correct 
% temporal order. For example, the buried shear mode converted to a longitudinal wave 
% can arrive before the direct shear depending upon the value of x3/a. Burline.m must 
% be called before this program. 

tsx=sort(txx); 
forn=l:6 
[i,yn(n)]=min(abs(txx(n)-tsx)); 
end 

forn=l:6 
[i,yy(n)]=min(abs(yn-n)); 
end 

% Assigning the derivatives of the Cagniard path to the various columns of the 
% variable <L 

d(l,:)=dlxl; 
d(2,:)=d3x3; 
d(3,:)=dblxl; 
d(4,:)=db3x3; 
d(5,:)=d3xl; 
d(6,:)=dlx3; 

% The derivatives of the Cagniard paths are put in the correct temporal order, (dd). 
% For example d(l,:) might correspond to shear branch mode converted as a longitudinal 
% branch. This branch will arrive before or after other branches depending on the value 
% of x3. 

forn=l:6 
ug=yn(n) 
dd(n,:)=d(yy(n),:); 
end 

maxjj=round(maxj+tsx( 1 )/delt)-1; 

forxxx=l:maxjj 

t=delt*(xxx-l); 

ift<=tsx(l) 
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dis(xxx)=0; 
yl=xxx; 

elseif t>tsx(l) & t<=tsx(2) 
dis(xxx)=(dd( 1 ,xxx-y 1)); 
disl=imag(dis); 
y2=xxx; 

elseif t>tsx(2) & t<=tsx(3) 
dis(xxxHdd(l,xxx-yl))+(dd(2,xxx-y2)); 
dis2=imag(dis); 
y3=xxx; 

elseif t>tsx(3) & t<=tsx(4) 
dis(xxxHdd(l,xxx-yl))+(dd(2,xxx-y2))+(dd(3,xxx-y3)); 
dis3=imag(dis); 
y4=xxx; 

elseif t>tsx(4) & t<=tsx(5) 
dis(xxxHdd(lJxxx-yl))+(dd(2,xxx-y2))+(dd(3,xxx-y3))+(dd(4,xxx-y4)); 
dis4=imag(dis); 
y5=xxx; 

elseif t>tsx(5) & t<=(tsx(6)+l) 
dis(xxxHdd(l,xxx-yl))+(dd(2,xxx-y2))+(dd(3,xxx-y3))+(dd(4,xxx-y4))+(dd(5,xxx- 

y5)); 
dis5=imag(dis); 
y6=xxx; 

else 
dis(xxxHdd(l,xxx-yl)Hdd(2,xxx-y2))+(dd(3,xxx-y3))+(dd(4,xxx-y4))+(dd(5,xxx- 
y5))+(dd(6,xxx-y6)); 
dis6=imag(dis); 
end 
end 
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Program Cagnlxl 

% This m-file defines the cagniard path for wlxl,w3x3,wblxl, and wb3x3. The 
% Cagniard path for these expressions is obtained analytically (without resorting to root 
% finding methods). The m-file cagn3xl is called to numerically find the w3xl and 
% wlx3 paths 

function [w3xl,wlx3,wlxl,w3x3,wblxl,wb3x3,txx]=cagnlxl 
(alpha,beta,delta,X3,delt,maxj); 

[w3xl,wlx3,txx]=cagn3xl (alpha,beta,delta,X3,delt,maxj); 

forhh=l:4 
txx(l)=(l+X3); 
txx(2)=(l+x3ysqrt(alpha); 
txx(3)=X3-l; 
txx(4HX3-l)/sqrt(alpha); 
t=txx(hh); 

% Loop for finding roots at each time step 

ifhh=l 

forjj=l:maxj 

tau=t+(jjj-l)*delt; % increment time 

% Define coefficients for quadratic formula 

C = (tauA2-l/2*(alpha+l)/alpha*(X3+l)A2)A2-l/4*((alpha+l)A2- 
4*alpha)/alphaA2*(X3+l)A4; 
B = -(tauA2-l/2*(alpha+l)/alpha*(X3+l)A2)*delta/alpha*(X3+l)A2- 
l/4*(2*(alpha+l)*delta-4*alpha*(beta+l))/alphaA2*(X3+l)A4; 
A=l/4*deltaA2/alphaA2*(X3+l)A4-l/4*(deltaA2-4*alpha*beta)/alphaA2*(X3+l)A4; 

% Apply quadratic formula to find roots 

wlxl(ü)=sqrt((-B-sqrt(BA2-4*A*C))/(2*A)); 
end 

elseifhh=2 

forjj=l:maxj 
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tau=t+(ij-l)*delt; % increment time 

% Define coefficients for quadratic formula 

C = (tauA2-l/2*(alpha+l)/alpha*(X3+l)A2)A2-l/4*((alpha+l)A2- 
4*alpha)/alphaA2*(X3+l)A4; 
B = -(tauA2-l/2*(alpha+l)/alpha*(X3+l)A2)*delta/alpha*(X3+l)A2- 
l/4*(2*(alpha+l)*delta-4*alpha*(beta+l))/alphaA2*(X3+l)A4; 
A=l/4*deltaA2/alphaA2*(X3+l)A4-l/4*(deltaA2-4*alpha*beta)/alphaA2*(X3+l)A4; 

% Apply quadratic formula to find roots 

w3x3(jj)=sqrt((-B+sqrt(BA2-4*A*C))/(2*A)); 
end 

elseifhh=3 

forjj=l:maxj 

tau=t+(jj-l)*delt; % increment time 

% Define coefficients for quadratic formula 

C = (tauA2-l/2*(alpha+l)/alpha*(X3-l)A2)A2-l/4*((alpha+l)A2- 
4*alpha)/alphaA2*(X3-l)A4; 
B = -(tauA2-l/2*(alpha+l)/alpha*(X3-l)A2)*delta/alpha*(X3-l)A2- 
l/4*(2*(alpha+l)*delta-4*alpha*(beta+l))/alphaA2*pö-l)A4; 
A=l/4*deltaA2/alphaA2*(X3-l)A4-l/4*(deltaA2-4*alpha*beta)/alphaA2*(X3-l)A4; 

% Apply quadratic formula to find roots 

wblxl(jj)=sqrt((-B-sqrt(BA2-4*A*C))/(2*A)); 
end 

elseifhh=4 

forjj=l:maxj 

tau=t+(ij-l)*delt; % increment time 
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% Define coefficients for quadratic formula 

C = (tauA2-l/2*(alpha+l)/alpha*(X3-l)A2)A2-l/4*((alpha+l)A2- 
4*alpha)/alphaA2*(X3- 1)A4; 
B = -(tauA2-l/2*(alpha+l)/alpha*(X3-l)A2)*delta/alpha*(X3-l)A2- 
l/4*(2*(alpha+l)*delta-4*alpha*(beta+l))/alphaA2*(X3-l)A4; 
A=l/4*deltaA2/alphaA2*(X3-l)A4-l/4*(deltaA2-4*alpha*beta)/alphaA2*(X3-l)A4; 

% Apply quadratic formula to find roots 

wb3x3(jj)=sqrt((-B+sqrt(BA2-4*A*C))/(2*A)); 
end 

end 
end 
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Program Cagn3xl 

% This m-j51e defines the Cagniard paths corresponding to wlx3 and w3xl. 
% This program utilizes Midler's Method to find the roots. This program 
% is basically the same as cagn77.m 

function [w3xl,wlx3,txx]=cagn3xl (alpha,beta,delta,X3,delt,maxj); 

wstl=0010; 
txx(l)=H-X3/sqrt(alpha); 
txx(2)=l/sqrt(alpha)+X3; 
txx(5)=txx(l); 
txx(6)=txx(2); 

% loop for shear reflected as long and long reflected as shear 

forggg=l:2 

ifggg=l 

clear wr 

% Define starting omega values with a little uncertainty added on either side 
% so as to insure that root finding technique converges on root If the exact root is 
% given as the first guess, then root finding technique blows up. 

wr(l)=wstl-(Of.02*j); 
wr(2)=wstl*j; 
wr(3)=wstl+(. l+.02*j); 
t=txx(l); 

% Loop for finding roots at each time step 

forjj=l:maxj 
tau=t+(ij-l)*delt; % increment time 

% Define Kraut's Coefficients 

psil=(alpha+l)A2-4*alpha; 
psi2=l/4*(alpha+l)A2/alphaA2-l/4*((alpha+l)A2-4*alpha)/alphaA2; 
psi3=tauA2-l/2*(alpha+l)/alpha*(X3A2+l); 
psi4=2*(alpha+l)*delta-4*alpha*(beta+l); 
psi5=l/2*(alpha+l)*delta/alphaA2-l/4*(2*(alpha+l)*delta- 
4*alpha*(beta+l))/alphaA2; 
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psi6=-(tauA2-l/2*(alpha+l)/alpha*(X3A2+l))*delta/alpha*(X3A2+l)- 
l/4*(2*(alpha+l)*delta-4*alpha*(beta+l))/alphaA2*(l-X3A2)A2- 
4*X3A2*(l/2*(alpha+l)*delta/alphaA2-l/4*(2*(alpha+l)*delta- 
4*alpha*(beta+l))/alphaA2); 
psi7=deltaA2-4*alpha*beta; 
psi8=l/4*deltaA2/alphaA2-l/4*(deltaA2-4*alpha*beta)/alphaA2; 
psi9=-l/4*(deltaA2-4*alpha*beta)/alphaA2*(l- 
X3A2)A2+l/4*deltaA2/alphaA2*(X3A2+l)A2-4*X3A2*(l/4*deltaA2/alphaA2- 
l/4*(deltaA2-4*alpha*beta)/alphaA2); 
pbil=l/4*(alpha+l)A2/alphaA2-l/4!,isil/alphaA2; 
phi2=psi3A2-4*X3A2*(l/4*(alpha+l)A2/alphaA2-l/4*psil/alphaA2)- 
l/4*psil/alphaA2*(l-X3A2)A2; 
pbi3=-psi3*delta/alpha*(X3A2+l)-l/4*psi4/alphaA2*(l-X3A2)A2-4*X3A2*psi5; 
rhol=psi3A2-4*X3A2*pbil-l/4*psil/alphaA2*(l-X3A2)A2; 
w8=psi9A2-4*X3A2*(l-X3A2)A2*psi7/alphaA2*(l/4*deltaA2/alphaA2- 
l/4*psi7/alphaA2); 
w6=-4*X3A2*(l-X3A2)A2*psi4/alphaA2*(l/4*deltaA2/alphaA2-l/4*psi7/alphaA2)- 
4*X3A2*(l-X3A2)A2*psi7/alphaA2*psi5+2*phi3*psi9; 
w4=-4*X3A2*(l-X3A2)A2*psil/alphaA2*(l/4*deltaA2/alphaA2-l/4*psi7/alphaA2)- 
4*X3A2*(l-X3A2)A2*psi4/alphaA2*psi5-4*X3A2*(l- 
X3A2)A2*psi7/alphaA2*pbil+2*rhol*psi9+pbi3A2; 
w2=-4*X3A2*(l-X3A2)A2*psil/alphaA2*psi5-4*X3A2*(l- 
X3A2)A2*psi4/alphaA2*pMl+2*rhol*phi3; 
wO=rholA2-4*X3A2*(l-X3A2)A2*psil/alphaA2*pbil; 

eps=l; % set remainder high so as to enter root finding routine 

if jj ~= 1 % For first iteration fill first three omega guesses 
wr(l)=wr(kk-l); 
wr(2)=wr(kk-2): 
wr(3)=wr(kk-3) 

end 
kk=3; 

while abs(eps) > .00000000000001   % loop until remainder is less than mis value 

% follow algorythm found in "Numerical Recipies" 

rpO=w8*wr(kk)A8+w6*wr(ldc)A6+w4*w^ 
rpt2=w8*wr(kk-1 )A8+w6*wr(kk- l)A6+w4*wr(kk- l)A4+w2*wr(kk- l)A2+wO; 
iptl=w8*wr(kk-2)A8+w6*wr^-2)A6+w4*w^ 
qKwr(kk)-wr(kk4))/(wr(kk-l)-wr(kk-2)); 
A=q*rpt3-q*(l+q)*rpt2+qA2*rptl; 
B=(2*q+l)*rpt3-(l+q)A2*rpt2+qA2*rptl; 
C=(l+q)*it3; 
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numml=B+sqrt(BA2-4*A*C); 
numm2=B-sqrt(BA2-4*A*C); 

if abs(numml) > abs(numm2) 
numm=numml; 

else 
numm==numm2; 

end 
rptt(ij)=rpt3; 
wr(kk+l)=^(kk)Kwr(kk>wr(kk-l))*(2*C/numm); 
eps=wr(kk+1)-wr(kk); 
kk=kk+l; 
end 
m(jj)=kk; 

w3xl(jj)=wr(kk); 
end 

else 

clear wr 

% Define starting omega values with a little uncertainty added on either side 
% so as to insure that root finding technique converges on root If the exact root is 
% given as the first guess, then root finding technique blows up. 

wr(l)=wstl-(0+.02*j); 
wr(2)=wstl*j; 
wr(3)=wstl+(. l+.02*j); 
t=txx(2); 

% Loop for finding roots at each time step 

forjj=l:maxj 
tau=t+(jj-l)*delt; % increment time 

% Define Kraut's Coefficients 

% follow algorythm found in "Numerical Recipies" 

rpt3Kw8*wr(kk)A8+w6*wr(kk)A6+w4^ 
rpt2^w8*wr(kk-l)A8+w6*wr(^-l)A6+w4*wr(kk-l)A4+w2*wr(kk-l)A2+w0)/w8; 
rptlKw8*wr^-2)A8+w6*wr(fck-2)A6+w4*wr^ 
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qKvvr(kk)-wr(kk-l))/(vsT(ldj:-l)-wr(kk-2)); 
A=q*ipt3-q*(l+q)*rpt2+qA2*rptl; 
B=(2*q+l)*rpt3-(l+q)A2^pt2+qA2*rptl; 
C=(l+q)*rpt3; 

numml=B+sqrt(BA2-4*A*C); 
numm2=B-sqrt(BA2-4*A*C); 

if abs(numml) > abs(numm2) 
numm=nuinnil; 

else 
numm=numm2; 

end 
rptt(jj)=rpt3; 
wr(kk+l)==w(^)Kwt(kk>\vr(kk-l))*(2*C/numm 
eps=wr(kk+1 )-wr(kk); 
kk=kk+l; 
end 
m(jj)=kk; 

wlx3(ij)=wr(kk); 
end 
end 
end 
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Program Burline 

% This m-file defines the Cagniard paths for a buried line source in a group (i) 
% transverely isotropic material. The various paths have the following designation. 
% wblxl - direct shear 
% wb3x3 - direct longitudinal 
% wlxl - shear reflected as shear 
% w3x3 - long reflected as long 
% w3xl - long reflected as shear 
% wlx3 - shear reflected as long 

% Burline.m calls cagnlxl which calculates the wblxl, wb3x3, wlxl,w3x3 from 
% analytical expressions, and calculates wlx3 and w3xl by calling cagn3xl.m 

% Define elastic constants 
alpha=2; 
beta=2; 
gamma=4; 
kappa=sqrt( 1 +alpha. *beta-gamma); 

delt=.3; % delta time 
X3=l 000;       % x3 divided by source depth 
Maxj=3500; 

F2=l; 
F3=l; 
delta=gamma; 

[w3xl,wlx3,wlxl,w3x3,wblxl,wb3x3,txx]=cagnlxl(alpha,beta,delta,X3,delt,maxj); 

% Calculate the derivatives of the displacement 

forhjl=2:(maxj) 
dwlxl(hjlHwlxl(hjl)-wlxl(hjl-l))/delt; 
dwblxl(hj lHwblxl(hj l)-wblxl(hj l-l))/delt; 
dw3x3(hjlHw3x3(hjl)-w3x3(hjl-l))/delt; 
dwb3x3(hj lHwb3x3(hj l)-wb3x3(hj l-l))/delt; 
dwlx3(hj lHwlx3(hj l)-wlx3(hj l-l))/delt; 
dw3xl(hj lHw3xl(hj l)-w3xl(hj l-l))/delt; 

end 
dwlxl(l)=dwlxl(2); 
dwblxl(l)=dwblxl(2); 
dw3x3(l)=dw3x3(2); 
dwb3x3(l)=dwb3x3(2); 
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dwlx3(l)=dwlx3(2); 
dw3xl(l)=dw3xl(2); 

% This section puts together the displacement via the Cagniard method corresponding to 
% each Cagniard path discussed above. The coeficients cl, and c3 were obtained using 
% Maple. The expressions were cut and pasted from Maple. 

for iui=l :6; 
ifiui==l 

omega=wblxl; 
c3 = l./2.*2.A(l./2).*(l./alpha.*(alpha+l+gamma.*omega.A2- 
((gamma.*omega.A2+alpha+l).A2- 
4.*alpha.*(beta.*omega.A4+(beta+l).*omega.A2+l)).A(l./2))).A(l./2); 
cl = 
l./2.*2.A(l./2).*(l./alpha.*(alpha+l+gamma.*omegaA2+((gamma.*omega.A2+alpha 
+l)A2-4.*alpha.*(beta.*omega.A4+(beta+l).*omega.A2+l)).A(l./2))).A(l./2); 
Ml = i./(2.*c3.A2-2.*cl A2).*(F3.*(beta.*omega.A2-cl.A2+l)- 
F2.*omega.A2.*kappa)./cl; 
dblxl=-cl.*Ml.*dwblxl; 

elseif iui=2 

omega=wb3x3; 
c3 = l./2.*2.A(l./2).*(l./alpha.*(alpha+H-gamma.*omega A2- 
((gamma. *omega. A2+alpha+1). A2- 
4.*alpha.*(beta.*omega.A4+(beta+l).*omega.A2+l)).A(l./2))).A(l./2); 
cl = 
l./2.*2.A(l./2).*(l./alpha.*(alpha+l+gamma.*omega.A2+((gamma.*omega.A2+alpha 
+l).A2-4.*alpha.*(beta.*omega.A4+(beta+l).*omega.A2+l)).A(l./2))).A(l./2); 
M2 = i./(2.*cl.A2-2.*c3.A2).*(F3.*(beta.*omega A2-c3 A2+l)- 
F2.*omega.A2. *kappa)./c3; 
db3x3 = -c3.*M2.*dwb3x3; 
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elseif iui=3 

omega=wlxl; 

c3 = 
l./2.*2.A(l./2).*(l./alpha.*(alpha+H-gamma.*omega.A2- 
((gamma.*omega.A2+alpha+l).A2- 
4.*alpha.*(beta.*omegaA4+(beta+l).*omega.A2+l)).A(l./2))).A(l./2); 

cl = 
172.*2.A(172).*(17alpha.*(alpha+l+gamma.*omegaA2+((gamina.*omegaA2+alpha 
+l).A2-4.*alpha.*(beta.*omegaA4+(beta+l).*omega.A2+l)).A(l./2))).A(l./2); 

EE31 = 
-l./2.*i.*(c3.*alpha.*cl A2.*omega.A4.*F2.*kappa- 
c3.*alpha.*cl.A2.*omegaA4.*kappa.*F3.*beta+c3.*alpha.*clA4.*omegaA2.*kappa. 
*F3-2.*c3.*omega.A6.*kappa.*F2-3.*c3.*omega.A4.*kappa.*F2- 
c3.*omega.A4.*F2.*alpha.*cl A2+c3.*omegaA4.*F3.*kappa.*cl.A2+c3.*omega.A2.* 
F2+2.*c3.*omega.A4.*F2- 
c3.*omega.A2.*F2.*alpha.*cl A2+c3.*omega.A2.*F3.*kappa.*cl.A2- 
c3.*omega.A2.*kappa.A2.*F3.*cl A2+c3.*omega.A6.*F2+c3.*alpha.*clA2.*F3.*beta. 
*omega.A2- 
c3.*alpha.*cl.A2.*omega.A2.*kappa.*F3+c3.*omega.A6.*kappaA2.*F2+c3.*omega.A 

4.*kappa.A3.*F3.*cl A2-kappa.*omega.A4.*cl.*F3.*beta- 
c3.*omega.A2.*kappa.*F2+c3.*alpha.*cl.A2.*F3-c3.*alpha.*cl.A4.*F3- 
2.*c3.*omega.A4.*kappa.A2.*F3.*cl A2+c3A3.*omega.A2.*kappa.A2.*alpha.*F3.*cl. 
A2+c3A3.*omega.A2.*kappa.*alpha.*F2+c3.*omegaA4.*kappa.A2.*F2+2.*kappa.*o 
mega.A2.*cl A3.*F3+kappa.A2.*omega.A4.*cl.*F2- 
kappa.*omega.A2.*cl.*F3+c3.A3.*omega.A4.*kappa.*alpha.*F2- 
2.*omega.A6.*cl.*F2.*kappa+omegaA4.*cl.*F3+omegaA4.*kappa.*clA3.*F2.*alph 
a-omega.A4.*kappaA2.*cl.A3.*F3+omega.A6.*cl.*F2-... 
omega.A4.*cl A3.*F2.*alpha- 
c3A3.*omega.A4.*alpha.*F2+kappa.*omegaA2.*clA3.*F2.*alpha- 
kappa.A2.*omegaA2.*cl A3.*F3-kappa.*omega.A2.*cl.*F2- 
alpha.*c3.A2.*omegaA4.*cl.*F2+alpha.A2.*c3A2.*omega.A2.*clA3.*F2- 
alpha.*c3.A2.*omega.A2.*cl.A3.*F3.*kappa- 
alpha.*c3.A2.*omega.A2.*cl.*F2+omega.A6.*cl.*F3.*beta- 
omegaA4.*cl A3.*F3+omegaA2.*cl.*F3- 
alpha.*c3A2.*omegaA4.*cl.*F3.*beta+alpha.*c3A2.*omegaA2.*cl.A3.*F3+alpha.* 
c3A2.*omega.A4.*cl.*F2.*kappa-alpha.*c3A2.*omega.A2.*cl.*F3- 
c3A3.*alphaA2.*cl.A2.*F3.*beta.*omegaA2+c3.A3.*alphaA2.*clA4.*F3- 
c3A3.*alphaA2.*cl A2.*F3+c3A3.*omega.A2.*alpha.A2.*F2.*cl A2- 
c3.A3.*omega.A2.*alpha.*F3.*kappa.*cl.A2- 
c3.A3.*omega.A2.*alpha.*F2+c3.*alpha.*clA2.*omegaA4.*F3.*beta- 
c3.*alpha.*cl A4.*omega A2.*F3+c3.*alpha.*cl A2.*omega.A2.*F3+omega.A4.*cl.*F 
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3.*beta-omega.A2.*cl.A3.*F3-3.*omega.A4.*cl.*F2.*kappa+2.*omega.A4.*cl.*F2- 
omega.A2.*cl A3.*F2.*alpha+omega.A2.*cl.*F2- 
omega. A6. *kappa. *c 1. *F3. *beta+2. *omega. A4. *kappa. *c 1. A3. *F3+omega. A6. *kappa. 
A2.*cl.*F2-„. 
omega A4.*kappa.*cl.*F3).*kappa./(cl-c3)A2./(cl+c3)./(- 
alpha.*cl.A2+alpha.*cl A2.*kappa.*omega A2+cl A2.*kappa.*alpha+alpha A2.*cl A2. 
*c3.A2-alpha.*cl A2.*omega.A2+c3.*kappa.*alpha.*cl+l- 
kappa+alpha.*c3.A2.*kappa.*omega.A2+omega.A4- 
omega. A2. *alpha. *c3 .A2+omega. A4. *kappa. A2-2. *kappa. *omega. A4- 
3.*kappa.*omega.A2+2.*omega.A2- 
alpha.*c3 A2+omega.A2.*kappa.A2+c3.A2.*kappa.*alpha); 

dlxl=EE31.*dwlxl: 

elseif iui=4 

omega=wlx3; 

c3 = 
1 ./2.*2.A(1 ./2).*(1 ./alpha.*(alpha+l+gamma.*omega.A2- 
((gamma. *omega. A2+alpha+1). A2- 
4.*alpha.*(beta.*omega.A4+(beta+l).*omega.A2+l)).A(l./2))).A(l./2); 

cl = 
172.*2.A(172).*(17alpha.*(alpha+l+gamma.*omegaA2+((gamma.*omega.A2+alpha 
+l)A2-4.*alpha.*(beta.*omega.A4+(beta+l).*omega.A2+l)).A(l./2))).A(l./2); 

EE33 = 
-1.12. *i. *(kappa. *omega.A4. *cl. *F3. *beta- 
2. *kappa. A2. *omega. A4. *c 1. *F2+kappa. *omega. A2. *c 1. *F3+4. *omega. A6. *c 1. *F2. * 
kappa-omega. A4. *c 1. *F3- 
2.*omega.A6.*cl.*F2+2.*kappa.*omegaA2.*cl.*F2+4.*alpha.*c3A2.*omega.A4.*cl. 
*F2+4.*alpha.*c3A2.*omega.A2.*cl.*F2-omega.A6.*cl.*F3.*beta- 
omega. A2.*cl.*F3-4.*alpha.*c3.A2.*omega.A4.*cl.*F2. ♦kappa- 
omega. A4. *c 1. *F3. *beta+6.*omega. A4. *c 1 .*F2. *kappa-4. *omega.A4. *c 1 .*F2- 
2.*omega.A2.*cl.*F2+omega.A6.*kappa.*cl.*F3.*beta- 
2.*omega.A6.*kappa A2.*cl .*F2+omega.A4.*kappa.*cl .*F3- 
3.*omega.A4.*kappa.*cl.*F3.*c3.A2- 
c3A2.*alpha.*cl.*F3.*beta.*omegaA2+c3.A4.*alpha.*cl.*F3-c3.A2.*alpha.*cl.*F3- 
omega.A4.*kappa.A3.*cl.*F3.*c3.A2+2.*omega.A2.*kappa.A2.*cl.*F3.*c3.A2- 
3.*omega.A2.*kappa.*cl.*F3.*c3.A2+c3.A4.*alpha.*omega.A2.*kappa.*cl.*F3+c3.A2 
.*alpha.*omega.A4.*kappa.*cl.*F3.*beta+3.*omega.A4.*kappa.A2.*cl.*F3.*c3A2+c 
3A2.*alpha.*omega.A2.*kappa.*cl.*F3+omega.A2.*cl.*F3.*c3.A2- 
c3.A6.*alpha.A2.*cl.*F3+omega.A4.*cl.*F3.*c3.A2+c3.A4.*alpha.A2.*cl.*F3.*beta.* 
omega. A2+... 
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c3.A4.*alpha.A2.*cl .*F3-c3 A4.*alpha.*omega A2.*kappa.A2.*cl .*F3- 
2.*c3 A2.*alpha.*omega.A2.*kappa.*cl.*F2- 
2.*c3.A4.*omegaA2.*alpha.A2.*cl.*F2).*kappa./(cl-c3).A2./(cl+c3)./(- 
alpha.*cl A2+alpha.*cl,A2.*kappa.*omega.A2+cl A2.*kappa.*alpha+alpha A2.*cl.A2. 
*c3 A2-alpha.*cl A2.*omega.A2+c3.*kappa.*alpha.*cl+l- 
kappa+alpha.*c3.A2.*kappa.*omega.A2+omega.A4- 
omega.A2.*alpha.*c3 .A2+omega. A4. *kappa. A2-2. *kappa. *omega. A4- 
3.*kappa.*omega.A2+2.*omega.A2- 
alpha.*c3 A2+omega.A2.*kappaA2+c3 A2.*kappa.*alpha); 

dlx3=EE33.*dw3xl; 

elseifiui=5 

omega=w3xl; 

c3 = 
l./2.*2.A(l./2).*(l./alpha.*(alpha+l+gamma.*omegaA2- 
((gamma.*omega.A2+alpha+l).A2- 
4.*alpha.*(beta.*omega.A4+(beta+l).*omegaA2+l)).A(l./2))).A(l./2); 

cl = 
lV2.*2.A(iy2).*(17alpha.*(alpha+l+gamma.*omega.A2+((gamma.*omegaA2+alpha 
+l).A2-4.*alpha.*(beta.*omegaA4+(beta+l).*omega.A2+l)).A(l./2))).A(l./2); 

EE41 = 
l./2.*i.*(4.*c3.*alpha.*cl A2.*omega.A4.*F2.*kappa- 
c3. *alpha. *c 1. A2. *omega.A4. *kappa.*F3. *beta- 
c3. *alpha. *c 1. A4. *omega. A2.*kappa. *F3-4. *c3. *omega. A6. *kappa. *F2- 
6.*c3.*omega.A4.*kappa.*F2- 
4.*c3.*omega.A4.*F2.*alpha.*cl.A2+3.*c3.*omega.A4.*F3.*kappa.*cl.A2+2.*c3.*om 
ega.A2.*F2+4.*c3.*omega.A4.*F2- 
4.*c3.*omega.A2.*F2.*alpha.*cl A2+3.*c3.*omega.A2.*F3.*kappa.*cl A2- 
2.*c3.*omega.A2.*kappaA2.*F3.*cl A2+2.*c3.*omega.A6.*F2+c3.*alpha.*cl A2.*F3. 
♦beta. *omega. A2- 
c3.*alpha.*cl A2.*omega.A2.*kappa.*F3+2.*c3.*omega.A6.*kappaA2.*F2+c3.*omeg 
aA4.*kappa.A3.*F3.*clA2-2.*c3.*omega.A2.*kappa.*F2+c3.*alpha.*cl.A2.*F3- 
c3.*alpha.*cl.A4.*F3- 
3.*c3.*omega.A4.*kappaA2.*F3.*cl.A2+2.*c3.*omega.A4.*kappaA2.*F2- 
omega.A4.*c3.*F3.*cl A2+omega.A6.*c3.*F3.*beta+omega.A4.*c3.*F3+2.*omega.A2 
.*alphaA2.*cl.A4.*c3.*F2+2.*cl.A2.*alpha*c3.*F2.*omegaA2.*kappa- 
cl A4.*alphaA2.*c3.*F3.*beta.*omega.A2+cl.A4.*alpha.*omega.A2.*kappa.A2.*c3.*F 
3-omega.A4.*kappa.*c3.*F3-omega.A2.*kappa.*c3.*F3-cl A4.*alpha.A2.*c3.*F3+... 
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cl.A6.*alpha.A2.*c3.*F3-omega.A4.*kappa.*c3.*F3.*beta- 
omega.A6.*kappa.*c3.*F3.*beta+omega.A4.*c3.*F3.*beta- 
omega.A2.*c3.*F3.*cl.A2+omega.A2.*c3.*F3).*kappa./(cl-c3).A2./(cl+c3)./(- 
alpha.*cl A2+alpha.*cl A2.*kappa.*omega.A2+cl.A2.*kappa.*alpha+alpha A2.*cl A2. 
*c3 A2-alpha.*cl.A2.*omega.A2+c3.*kappa.*alpha.*cl+l- 
kappa+alpha. *c3. A2. *kappa. *omega. A2+omega. A4- 
omega.A2.*alpha.*c3.A2+omega.A4.*kappa.A2-2.*kappa.*omega.A4- 
3.*kappa.*omega.A2+2.*omega.A2- 
alpha.*c3.A2+omegaA2.*kappa.A2+c3 A2.*kappa.*alpha); 

d3xl=EE41.*dwlx3; 

elseif iui=6 

omega=w3x3; 

c3 = 
l./2.*2.A(l./2).*(l./alpha.*(alpha+l+gamma.*omegaA2- 
((gamma. *omega. A2+alpha+1). A2- 
4.*alpha.*(beta.*omegaA4+(beta+l).*omega.A2+l)).A(l ./2))).A(1 ./2); 

cl = 
172.*2.A(iy2).*(iyalpha.*(alpha+l+ganmia.*omegaA2+((gamnia.*omega.A2+alpha 
+l)A2-4.*alpha.*(beta.*omega.A4+(beta+l).*omega.A2+l)).A(l./2))).A(l./2); 

EE43 = 
1 ,/2.*i.*(-c3.*alpha.*cl A2.*omega A4.*F2.*kappa+2.*c3.*omega.A6 
.*kappa.*F2+3.*c3.*omegaA4.*kappa.*F2+c3.*omegaA4.*F2.*alpha.*clA2- 
c3.*omegaA2.*F2-2.*c3.*omegaA4.*F2+c3.*omega.A2.*F2.*alpha.*clA2- 
c3.*omega.A6.*F2-c3.*omega.A6.*kappaA2.*F2+c3.*omega.A2.*kappa.*F2- 
c3A3.*omegaA2.*kappa.*alpha.*F2-c3.*omega.A4.*kappa.A2.*F2- 
kappa.A2.*omega.A4.*cl .*F2- 
c3A3.*omega.A4.*kappa.*alpha.*F2+2.*omega.A6.*cl.*F2. ♦kappa- 
omega. A4.*kappa.*cl.A3.*F2.*alpha- 
omega.A6.*cl.*F2+omegaA4.*cl.A3.*F2.*alpha+c3.A3.*omega.A4.*alpha.*F2- 
kappa.*omegaA2.*cl A3.*F2.*alpha+kappa.*omega.A2.*cl.*F2+alpha.*c3.A2.*omeg 
aA4.*cl.*F2- 
alphaA2.*c3.A2.*omegaA2.*cl.A3.*F2+alpha.*c3.A2.*omega.A2.*cl.A3.*F3.*kappa+ 
alpha.*c3A2.*omega.A2.*cl.*F2-alpha.*c3A2.*omega.A4.*cl.*F3.*beta- 
alpha.*c3A2.*omega.A4.*cl.*F2.*kappa-alpha.*c3A2.*omegaA2.*cl.*F3- 
c3A3.*omega.A2.*alpha.A2.*F2.*clA2+c3A3.*omega.A2.*alpha.*F3.*kappa.*cl.A2+ 
c3A3.*omega.A2.*alpha.*F2+c3.*alpha.*clA2.*omega.A4.*F3.*beta+c3.*alpha.*cl. 
A2.*omega.A2.*F3+... 
3.*omega.A4.*cl.*F2.*kappa-2.*omegaA4.*cl.*F2+omega.A2.*cl.A3.*F2.*alpha- 
omega A2.*cl .*F2-omega.A6.*kappa.A2.*cl .*F2-omega A4.*kappa.*cl .*F3.*c3.A2- 
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c3.A2.*alpha.*cl.*F3.*beta.*omega.A2+c3.A4.*alpha.*cl.*F3-c3.A2.*alpha.*cl.*F3- 
omega.A4.*kappaA3.*cl.*F3.*c3.A2+omegaA2.*kappaA2.*cl.*F3.*c3.A2- 
omega.A2.*kappa.*cl.*F3.*c3 A2- 
c3 A4.*alpha.*omega.A2.*kappa.*cl.*F3+c3.A2.*alpha.*omegaA4.*kappa.*cl.*F3.* 
beta+2.*omega.A4.*kappaA2.*cl.*F3.*c3.A2+c3.A2.*alpha.*omega.A2.*kappa.*cl.* 
F3-omega.A6.*c3.*F3.*beta- 
omega.A4.*c3.*F3+omega.A4.*kappa.*c3.*F3+omega.A2.*kappa.*c3.*F3+omega.A4. 
♦kappa. *c3.*F3.*beta+omega.A6.*kappa.*c3.*F3.*beta-omega.A4.*c3.*F3.*beta- 
omega.A2.*c3.*F3- 
omega.A2.*alpha.*cl A2.*c3A3.*F3+omega.A2.*kappa.A2.*c3.A3.*F3+cl.*alpha.*c3. 
A4.*omega.A2.*F3- 
2.*omegaA2.*c3.A3.*F3.*kappa+omegaA4.*c3A3.*F3+omega.A2.*c3A3.*F3- 
cl.A3.*alpha.A2.*c3.A4.*F3+omega.A4.*kappa.A2.*c3.A3.*F3- 
2.*omega.A4.*c3.A3.*F3.*kappa- 
cl A3.*omega.A2.*kappa.A2.*alpha.*F3.*c3A2+cl.A3.*alpha.A2.*c3A2.*F3+... 
clA3.*alpha.A2.*c3.A2.*F3.*beta.*omegaA2).*kappa./(cl-c3).A2./(cl+c3)./(- 
alpha.*cl A2+alpha.*cl A2.*kappa.*omega.A2+cl A2.*kappa.*alpha+alpha.A2.*cl A2. 
*c3A2-alpha.*cl.A2.*omegaA2+c3.*kappa.*alpha.*cl+l- 
kappa+alpha. *c3. A2. *kappa. *omega. A2+omega. A4- 
omega.A2.*alpha.*c3.A2+omega.A4.*kappa.A2-2.*kappa.*omega.A4- 
3 .*kappa. *omega. A2+2. *omega.A2- 
alpha.*c3 A2+omega.A2.*kappaA2+c3 A2.*kappa.*alpha); 

d3x3=EE43.*dw3x3; 

end 
end 
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Program Cagniard 

% This function defines the 3 relevant portions of the Cagniard Path for 
% off epicentral observation points. It returns WRR, the Cagniard Path. Updated 

th=10*pi/180; % Theta 
a=1.57; % Payton's alpha 
b=4.17; % Paytons's beta 
g=2.4; % Payton's gama 
delt=00025; % Root finding step size 
maxj=4800; % Maximum number of steps 
x3=l; % Define source receiver separation, x3, in mm. 

wm=-(g*(a+l)-2*a*(b+l)-2*(a*(a+b-g)*(l+a*b-g))A(.5))/(gA2-4*a*b); 
wp=-(g*(a+l)-2*a*(b+l)+2*(a*(a+b-g)*(l+a*b-g))A(.5))/(gA2-4*a*b); 

% You can either call CAGN88 first in which case it will return wstl,txx,th 
% or you can manually add these constants. 

% Test for isotropy. If isotropic, then wavefronts are spherical and wave arrival times are 
% easily defined, else call cagn88 to obtain wave arrival times (txx) and corresponding 
% omega values (wstl). Wstl and txx values tell this program where to start the finding 
% roots. It is very important that txx and wstl values are as accurate as possible 
% to avoid root finding program skipping to another portion of the Cagniard path. 

if a=b 
txx=[l/sqrt(a) 1]; 
wstl=[sin(th)/sqrt(a) sin(th)]; 
else 
[wstl,txx,th] = cagn88(th,a,b,g); 
end; 

% Look for two or four Cagniard Branches. This depends on if observation direction 
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% intersects lacuna. 

[ii.oo]=size(txx); 
fordf=l:oo 

% Define delta time 

delt=delt/x3; 
s=sin(th); 
c=cos(th); 
eth=sA4+b/a*cA4+g/a*sA2*cA2; 

clear wr 

% Define starting omega values with a little uncertainty added on either side 
% so as to insure that root finding technique converges on root. If the exact root is 
% given as the first guess, then root finding technique blows up. 

wr(lHwstl(df)-.02)*j; 
wr(2)=(wstl(df))*j; 
wr(3Xwstl(df)+.02)*j; 
t=txx(df)+delt/16; 

% Loop for finding roots at each time step 

forjj=l:maxj 
tau=t+(jj-l)*delt; % increment time 

% Define Kraut's Coefficients 

aath—b; 
ath=i*b*((2*tau*s/eth)*(2*sA2+g/a*cA2)); 
bth=b*((tauA2/eth)*(6*sA2+g/a*cA2)-(cA2/eth)*(cA2*(b/a+l/a)+sA2*(l/a+l))); 
cth=-i*b*((2*tau*s/eth)*(2*tauA2-cA2*(l/a+l))); 
dth=-b*((tauA2/eth)*(tauA2-cA2*(l/a+l))+cA4/(a*eth)); 

eps=l; % set remainder high so as to enter root finding routine 

if Ü ~= 1 % F°r fest iteration fill first three omega guesses 
wr(l)=wr(kk-l); 
wr(2)=wr(kk-2); 
wr(3)=wr(kk-3); 

end 
kk=3; 

% loop until remainder is less than this value 
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while abs(eps) > .0000000000001 

% follow algorythm found in "Numerical Recipies" 

rpt3=aam*wr(kk)M+ath*w(kk)A3+bto^ 
rpt2=aa1h*wr(kk-l)A4+am*wr(^-l)A3+bth*wr(kk-l)A2+cm*wr(ldc-^ 
rptl=aath*w(Wc-2)A4+ath*wr(^-2)A3+^^ 
qKwr(kk)-wr(kk-l))/(wr(kk:-l)-wr(kk:-2)); 
A=q*rpt3-q*(l+q)*rpt2+qA2*rptl; 
B=(2*q+l)*rpt3-(l+q)A2*rpt2+qA2*rptl; 
C=(l+q)*rpt3; 

numml=B+sqrt(BA2-4*A*C); 
numm2=B-sqrt(BA2-4*A*C); 

if abs(numml) > abs(numm2) 
numm=numml; 

else 
numm=numm2; 

end 

rptt(jj)=rpt3; 
wr(ldc+l)==wr(kk)-(wr(kk>wr(kk-l))*(2*C/nuinm); 
eps=wr(kk+1)-wr(kk); 
kk=kk+l; 

end 

m(jj')=kk; 
wrr(ü,df)=wr(kk); 

end 
end 

Program Cagn88 
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% This function finds the wave arrival times for a particular angle and 
% also finds the correspond omega values. This info must be used in "CAGNAIRD" 
% Type the next line exactly but replace (th) with a number. Function returns 
% what is in square brackets only. 

function [wstl,txx,th] = cagn88(th,a,b,g); 

% Define theta array and build first quadrant of slowness surface 
% (eqns. 2.2.6,2.2.4,1.5.26,1.5.27 in Payton) 

% If theta equals zero, we can blistfully skip thru many hoops, (i.e. the energy 
% propagation direction equals the normal to the slowness surface making 
% life much easier. 

ifth = 0 

thl=0; 
am=a*((cos(ml)).M)+g*((cos(ml)).A2).*((sm(ml)).A2)+b*((sin(thl)).A4); 
bth=(a+l)*((cos(thl)).A2)+(b+l)*((sin(thl)).A2); 
rplus=sqrt((bth+sqrt(bth.A2-4*ath))./(2*ath)); 
rminus=sqrt((bth-sqrt(bth.A2-4*ath))./(2*ath)); 
pp=rplus. *cos(thl); 
qp=rplus.*sin(thl); 
pm=rminus.*cos(thl); 
qm=rminus.*sin(thl); 
rp=sqrt(pp.A2+qp.A2); 
rm=sqrt(pm.A2+qm.A2); 
txx=[rmrp]; 
wstl=[0 0]; 

else 

thl=[0:.01:90]*pi/180; 
am=a*((cos(ml)).A4)+g*((cos(ml)).A2).*((sin(ml)).A2)+b*((sin(thl)).A4); 
bth=(a+l)*((cos(thl)).A2)+(b+l)*((sin(thl)).A2); 
rplus=sqrt((bth+sqrt(bthA2-4*ath))./(2*ath)); 
rrainus=sqrt((bth-sqrt(bth.A2-4*ath))./(2*ath)); 
pp=rplus. *cos(th 1); 
qp=rplus.*sin(thl); 
pm=rminus. *cos(thl); 
qm=rminus.*sin(thl); 
rp=sqrt(pp.A2+qp.A2); 
rm=sqrt(pm.A2+qm.A2); 
c2=(cos(thl)).A2; 
s2=(sin(thl)).A2; 
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kl=2*a*(b+l)-g*(a+l); 
k2=2*b*(a+l)-g*(b+l); 

% This seqment fills arrays for remaining 3 quadrants 

ty=size(rp); 
ty=ty(2); 
rpp(l:l:ty)=rp; 
rpp(ty+l:l:2*ty)=rp(ty:-l:l); 
rpp(2*ty+l:l:3*ty)=rp; 
rpp(3*ty+l: 1:4*ty)=rp(ty:-l: 1); 
rmm(l:l:ty)=rm; 
rrnm(ty+l: 1:2*ty)=rm(ty:-1:1); 
rmm(2*ty+l: 1:3*ty)=rm; 
rmm(3*ty+l: 1:4*ty)=rm(ty:-l: 1); 

% This seqment calculates the wavefront shape 
% (tang is the theta that goes with rrr for the wavefront and tangg with rrrr) 

forh=2:(ry-l); 
qpn=ö>p(h+l)-pp(h-l)); 
qpd=(qp(h+l)-qp(h-l)); 
qmn=(pm(h+1 )-pm(h-1)); 
qmd=(qrn(h+l)-qm(h-l)); 

ifqpnX)&qpdX) 
tang(h)=atan(-qpn/qpd); 
tangg(h)=atan(-qmn/qmd); 

elseif qpnX) & qpd<0 
tang(h)=(pi/2)+atan(qpn/qpd); 
tangg(h)=(pi/2)+atan(qmn/qmd); 

elseif qpn<0 & qpd<0 
tang(h)=pi+atan(-qpn/qpd); 
tangg(h)=pi+atan(-qmn/qmd); 

elseif qpn<0 & qpd>0 
tang(h)=atan(-qpn/qpd); 
tangg(h)=atan(-qmn/qmd); 

end 
thp=abs(thl(h)-tang(h)); 
thpp=abs(thl(h)-tanggOi)); 
adj=rpp(h)*cos(thp); 
adjj=rmm(h)*cos(thpp); 
rrr(h)=l/adj; 
rrrr(h)=l/adjj; 

end 
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% Check to see if the desired theta value falls within a cuspidal triangle 

oi=l;   % counting index 
i=l;     % counting index 

sgn=l; % set sign equal to 1 so as not to enter nested if loop during first loop 

% The idea here is to build the derivative of tang and look for zeros, zeros correspond 
% to critical angles. Then the critical angles are put in asscending order. If theta 
% of interest falls within these angles then four wave arrivals must be considered. 

for i=l: 8998 
ddtang(i+lHtang(i+l)-tang(i)); 
if i= 1 
ddtang(l)=ddtang(2); 
end 
i=i+l; 
sgn=sign(ddtang(i))*sign(ddtang(i-l)); 
if sgn --=1 

py(oi)=i; 
oi=oi+l; 

end 
end 

ifoi=l 
tcrit=pi/2; 
else 
tcrit=sort(tang(py)); 
end 

% The idea here, for a given th (must specify th when you call function), 
% is to find the tang and tangg value that is closest to th and relate this to 
% the corresponding rrr and rrrr values (for one th value, there are 3 rrr values and 
% and one rrrr value, ie 3 wave arrivals) There is only one corresponding tangg value 
% since the longitudinal branch is always convex and possilby 3 tang values since the 
% branch is locally concave. So after the first corresponding tang value is found 
% eliminate this from the array and look for the next and then repeat this process. 

if th < abs(tcrit(l)) | g = (b+1) & (gA2-4*a*b) < 0 

thdifl=abs(th-abs(tang)); 
thdif2=abs(th-abs(tangg)); 
[il,yll]=min(thdif2); 
[i2,y22]=min(thdifl); 
thdif3=thdifl([l:y22-30 y22+30:length(thdif2)]);  % eliminate 60 values around first 
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[i3,y33]=min(thdif3); % min so as not to land near 
% previous min 

thdif4=thdif3([l :y33-30 y33+30:length(thdif3)]);   % eliminate 60 values around first 
[i4?y44]=min(thdif4); % min so as not to land near 

% previous min 

y4=yll; 
yi=y22; 
y2=y33; 
y3=y44; 

% Put these min values in order of size (ie cronological order of wave arrivals) 

if    yl<y2&y2<y3 
y2=y2+59; 
y3=y3+118; 
elseif yl < y3 & y3 < y2 
y3=y3+59; 
y2=y2+59; 
elseify2<yl&yl<y3 
y3=y3+59; 
elseify2<y3&y3<yl 
y3=y3+59; 
elseify3<yl&yl<y2 
y2=y2+59; 
elseify3<y2&y2<yl 
y2=y2+59; 
end 

% gives the wave arrival times 

tl=l/rrrr(y4); 
t2=l/rrr(y2) 
t3=l/rrr(y3) 
t4=l/rrr(yl) 

txx=sort([tlt4t3t2]); 

% The idea here is for a given time of arrival to find the corresponding omega value. 

181 



165 

% The point at with the Cagniard path become purely imaginary corresponds to a 
% wave arrival. Procedure consist of substituting a wave arrival time into eqn. 4.41 in 
% Kraut and fluxing thru real omega values until a root is found (ie omega value 
% where Cagniard path becomes purely imaginary. Newtows mehtod is 
% not used since we are erasing around a complex surface. Instead an omega array is 
% populated and a search for a min value insues. 

s=sin(th); 
c=cos(th); 
eth=sA4+b/a*cA4+g/a*sA2*cA2; 

% For loop for each wave arrival 

fordf=l:4 
taul=txx(df); 

% Fill omega array. Make sure that omega array spans kissing root. 

dwr=0.001; 
wr=[-1.2:dwr:1.2]*j; 
swr=size(wr); 
swr=swr(2); 

% Coefficients for Cagniard Path (eqn. 4.42-4.47 in Kraut) 

aath—b; 
ath=d.*b.*((2.*taul.*s./eth).*(2.*s.A2+g./a*c.A2)); 

bth=b.*((taul.A2./eth).*(6.*s.A2+g./a*c.A2)- 
(cA2./eth).*(c.A2.*(b./a+l./a)+s.A2.*(l./a+l))); 

cth=-j-*b.*((2.*taul.*s./eth).*(2.*taulA2-cA2.*(l./a+l))); 
dth=-b.*((taul.A2./eth).*(taul.A2-c.A2.*(l./a+l))+c.A4./(a.*eth)); 

% Remainder 

rpt3(df, 1 :swr)=aath.*wr.A4+ath.*wr.A3+bth.*wr.A2+cth.*wr+dth; 
rpt3(df, 1 :swr)=real(rpt3(df,l :swr)); 

% Find min value "This routine is really screwed up! 
% The idea here is to find the kissing roots. First the derivative is found. 
% Then the min value of the derivative is found (drpt3) and compared against the min 
% value of the function itself (rpt3). DRPT3 can equal zero more than once but the value 
% of interest is the omega value wher DRPT3 and RPT3 both equal zero. 

foreee= l:swr-l 
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drpt3(dteee)=(rpt3(df,eee+l)-rpt3(df,eee))/(dwr); 
end 
drpt3(df,eee+l)=drpt3(df,eee); 
[i,y]=min(abs(rpt3(df,:).*drpt3(df,:))) 

wstl (df)=imag(wr(y)); 
end 

else 

thdifl=abs(th-abs(tang)); 
thdif2=abs(th-abs(tangg)); 
[il,yl]=min(thdif2); 
[i2,y2]=rnin(thdifl); 

% gives the wave arrival times 

t2=l/rrr(y2); 
tl=l/rrrr(yl); 

txx=sort([tl t2]); 

% The idea here is for a given time of arrival to find the corresponding omega value. 
% The point at with the Cagniard path become purely imaginary corresponds to a wave 
% arrival. Procedure consist of substituting a wave arrival time into eqn. 4.41 in 
% Kraut and fluxing thru real omega values until a root is found (ie omega value 
% where Cagniard path becomes purely imaginary. Newtows mehtod is 
% not used since we are erasing around a complex surface. Instead an omega array is 
% populated and a search for a min value insues. 

s=sin(th); 
c=cos(th); 
eth=sA4+b/a*cA4+g/a*sA2*cA2; 

% For loop for each wave arrival 

fordf=l:2 
taul=txx(df); 

% Fill omega array. Make sure that omega array spans kissing root. 
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dwr=0.001; 
wr=[-1.2:dwr:1.2]*j; 
swr=size(wr); 
swr=swr(2); 

% Coefficients for Cagniard Path (eqn. 4.42-4.47 in Kraut) 

aath=-b; 
ath=j.*b.*((2.*taul.*s./eth).*(2.*s.A2+g./a*c.A2)); 
bth=b.*((taul.A2./eth).*(6.*s.A2+g./a.*c.A2)- 
(c.A2./eth).*(c.A2.*(b./a+l./a)+s.A2.*(l./a+l))); 
cth=-j-*b.*((2.*taul.*s./eth).*(2.*taul A2-c.A2.*(l./a+1))); 
dth=-b.*((taul.A2./eth).*(taul.A2-cA2.*(l./a+l))+c.A4./(a.*eth)); 

% Remainder 

rpt3(df, 1 :swr)=aath.*wr.A4+ath.*wrA3+bth.*wr.A2+cth.*wH-dth; 
rpt3(df, 1 :swr)=real(rpt3(df, 1 :swr)); 

% Find min value "This routine is really screwed up! 
% The idea here is to find the kissing roots. First the derivative is found 
% Then the min value of the derivative is found (drpt3) and compared against the min 
% value of the function itself (rpt3). DRPT3 can equal zero more than once but the value 
% of interest is the omega value wher DRPT3 and RPT3 both equal zero. 

foreee= l:swr-l 
drpt3(df,eee)=(rpt3(df,eee+l)-rpt3(df,eee))/(dwr); 
end 
drpt3(df,eee+l)=drpt3(df,eee); 
[i,y]=inin(abs(rpt3(df,:).*drpt3(df,:))); 

wst 1 (df)=imag(wr(y)); 
end 
end 
end 
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Program Diss2 

% This m-file calculates the displacement resulting from a laser line source. 
% The theoretical expression obtained via the Cagniard inversion routine is convolved 
% with a Gaussian to mimic a finite source and detection spot as well as limited 
% bandwidth. The elastic constants used are those for graphite epoxy. 

% Load experimental data 

load testl 1 
loadun29 
testl l=testll+4.4e-3; 

% Enter material constants 

a=39.5; 
b=3.67; 
g=109; 
k=(l+a*b-g)A.5; 
rho=1.73; 
wr=1.008; 
y=5; 
t=[0:.002:4.56]; 
v444=1.50; 
tau=t*v444; 
tt=tau/y; 
deltau=002*v444/y; 
[jmax,imax]=size(t); 

% Ratio of c33/c44 
% Ratio of cll/c44 
% Payton's gamma 
% Payton's kappa 
% density in cgs units 
% Rayleigh root 
% Source reciever separation in mm 
% time array (microsec) 
% velocity in mm/microsec 
% time in mm 

% Integration delta for convolution 

% Build displacement for surface skimming longitudinal wave (sslw) 

rad=(a*(b*tt.A2-l).*(l-tt.A2)).A.5; 
num=tt.A2.*rad.*((l-k).*(l-2*ttA2)-(a-g*tt.A2)); 
den=((-2*(l-k)*tt.A2+g*ttA2-a)A2).*(l-ttA2)+a*(b*ttA2-l); 
disp=(num)./(den*pi); 

% Incorporate step functions that turn (sslw) on and off 

fori=l:(imax); 
iftt(i)<(l/sqrt(b)) 
dis(i)=0; 

elseif tt(i) > 1 
dis(i)=0; 
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else 
dis(i)=disp(i); 
end 

end; 

% Build displacement for Rayleigh wave (delta function) 

dprimel=4*(l-k)*(-2*wrA2+l)-2*(-2*g*wrA2+gfa); 
dprime2Ka*(b+l)-2*a*b*wrA2)/((l-wrA2)*(-2*(l-k)*wrA2+g*wrA2-a)); 
dprime=dprimel-dprime2; 
dnum==vvr*(l-wrA2)*(-2*(l-k)*wrA2+g*wrA2-a+l-k); 
psir=-dnum/(dprime); 
tr=wr*y/v444; 
tnr=imax*tr/t(imax); 
dis(tnr)=20; 

% Temporal convolution of sslw and guassian 

cs=dis(l); 
ce=dis(imax)*exp(-((t-imax*deltau).A2)/.07); 
cnvs=0; 
fori=2:imax-l; 

cnv=2*dis(i)*exp(-((tt-i*deltau).A2)/.00077); 
cnvs=cnvs+cnv; 

end; 
cnvs=1.42e-8*(cnvs+cs+ce)*deltau/2; 

ttt=[0:l:2326]*2e-3; 
plot(ttt,un29-le-3); 
hold 
plot(tt*y/(v444),(-cnvs* 10e6)* 13,V); 
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Program Offepi2 

% This m-file Calculates the displacement for zinc for observation directions that 
% are off the epicentral axis. The Cagniard integration contour must be defined first, 
% thus the programs Cagniard and Cagn88 must be call before nmning this program. 

% Define elastic constants 

a=1.57; 
b=4.17; 
g=2.4; 
kfc=(l'+a*b-g)A.5; 

tint=775;        % Define max number of point for Cagniard contour for long and 

% shear portion. 
deh=00025; 
maxj=4800; 
load wrr; 
txx=[0.7944   0.9934    1.0841    1.1766]; 

[i,y]==min(abs(imag(wrr( 1:1 rtint, 1)))); 

% Assign each portion of Cagniard Contour to wl thru w3 0 

wl=wrr(l:l:tint,l); 
w2=wrr(:,3); 
w3=wrr(:,4); 

% Evaluate derivative of each portion of Cagniard contour 

forhjl=l:(tint-l) 
dwl(hj l)=(wl(hj l+l)-wl(hj l))/delt; 

end 
dwl(hjl+l)=dwl(hjl); 

forhj2=l:(maxj-l) 
dw2(hj2Hw2(hj2+l>w2(hj2))/delt; 

end 
dw2(hj2+l)=dw2(hj2); 

for hj3=l :(maxj-1) 
dw3(hj3Hw3(hj3+l>w3(hj3))/delt; 

end 
dw3(hj3+l)=dw3(hj3); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%% shear & long %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Buld kappa array 

k3wll=(g*(wl.A2)+a+l); 
k3wl2=sqrt(k3 wl 1 .A2-4*a*(b*(wl A4)+(b+l)*(wl .A2)+l)); 
k3wl=sqrt(k3wl l+k3wl2)./sqrt(2*a); 
klwll=(g*(wlA2)+a+l); 
klwl2=sqrt(klwl 1 A2-4*a*(b*(wl A4)+(b+l)*(wl A2)+l)); 
klwl=sqrt(klwll-klwl2)./sqrt(2*a); 

% Build Rayleigh pole array 

dl l=2*(l-kk)*(wl A4+wl A2)-(g*wl A2+a).*(wl.A2+l)-a*klwl.*k3wl; 

% Build A3 

als31=klwl./((klwl-k3wl).*dl 1); 
als32=(wl A2).*(a*k3wl A2+(kk-l)*wl A2+(kk-1)); 
als3=als31.*als32; 
disl=- abs(imag(als3)).*(imag(dwl))'+abs(real(dwl)l).*real(als3); 
[ii,yy]=min(abs(disl(50:1 :tint))); 
disll=disl(l:l:yy); 
disll(yy+l)=0; 
disl l(yy+2:maxj)=zeros(l,maxj-yy-l); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%% lower hyperbola %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0/o%%%%%%%%%% 

% Buld kappa array 

k3w21=(g*(w2.A2)+a+l); 
k3w22=sqrt(k3w21A2-4*a*(b*(w2A4)+(b+l)*(w2A2)+l)); 
k3 w2=sqrt(k3 w2 l+k3 w22)./sqrt(2*a); 
klw21=(g*(w2A2)+a+l); 
klw22=sqrt(klw21A2-4*a*(b*(w2.A4)+(b+l)*(w2.A2)+l)); 
klw2=sqrt(klw21-klw22)./sqrt(2*a); 

% Build Rayleigh pole array 

d22=2*(l-kk)*(w2.A4+w2.A2)-(g*w2.A2+a).*(w2.A2+l)-a*klw2.*k3w2; 
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% Build A3 

au3 I=klw2./((klw2-k3w2).*d22); 
au32=(w2.A2).*(a*k3w2.A2+(kk-l)*w2.A2+(kk-l)); 
au3=au31.*au32; 
dis2=(au3.*conj(dw2,)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%  upper hyperbola %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%0/o%%%%%%%%%%%%%%% 

% Buld kappa array 

k3w3 l=(g*(w3.A2)+a+l); 
k3w32=sqrt(k3w31.A2-4*a*(b*(w3A4)+(b+l)*(w3A2)+l)); 
k3 w3=sqrt(k3w3 l+k3w32)./sqrt(2*a); 
klw31=(g*(w3A2)+a+l); 
klw32=sqrt(klw31 A2-4*a*(b*(w3.A4)+(b+l)*(w3.A2)+l)); 
kl w3=sqrt(kl w31-kl w32)./sqrt(2*a); 

% Build Rayleigh pole array 

d33=2*(l-kk)*(w3.A4+w3A2)-(g*w3.A2+a).*(w3A2+l)-a*klw3.*k3w3; 

% Build A4 

al41=k3w2./((klw2-k3w2).*d22); 
al42=(w2A2).*(a*klw2A2+(kk-l)*w2A2+(kk-l)); 
al4=al41.*al42; 
dis3=(al4.*(dw3')); 

% This portion of the program build entire displacement array from 
% the various portions of the integration contour. The main diffuculty is 
% putting the dislacement array in the correct order. 

maxjj=round(maxj+txx( 1 )/delt)-1; 
forxxx=l:maxjj 
t=delt*(xxx-l); 

ift<=txx(l) 
dis(xxx)=0; 
yl=xxx; 
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elseif t>txx(l) & t<=txx(2) 
dis(xxx)=(disl l(xxx-yl)); 
y2=xxx; 

elseif t>txx(2) & t<=txx(3) 
dis(xxx)=0; 
y3=xxx; 

elseif t>txx(3) & t<=txx(4) 
dis(xxx)=(disl I(xxx-yl)+dis2(xxx-y3)); 
y4=xxx; 

elseif t>txx(4) 
dis(xxx)=(dis 11 (xxx-y 1 )+dis2(xxx-y3)+dis3(xxx-y4)); 
end 
end 
dis=real(dis); 

jk=size(dis); 
jk=jk(2); 
jkk=jk-l; 
t=[0:delt:delt*jkk]; 

pause 

% Temporal convolution of sslw and guassian 

cs=dis(l); 
ce=dis(jk)*exp(-((t-jk*delt).A2)/2e-4); 
cnvs=0; 
for i=2:jk-l; 

cnv=2*dis(i)*exp(-((t-i*delt).A2)/2e-4); 
cnvs=cnvs+cnv; 

end; 
cnvss=(cnvs+cs+ce)*delt/2; 
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ABSTRACT 

Signal detectability is arguably the key parameter to be optimized when designing 

a laser-based system for remote generation and detection of acoustic signals. The 

acoustic signal generated by a laser source depends on the thermal, optical, and elastic 

properties of the specimen and on the characteristics of the laser source. For a given 

materials system, the laser source parameters, including temporal profile, spatial profile, 

energy, and wavelength, can be chosen such that the signal-to-noise ratio of the detection 

system is maximized. 

It is well known that the amplitude of a laser generated acoustic waves can be 

significantly enhanced by increasing the energy in the generation pulse such that surface 

ablation occurs. The amplitude of acoustic waves generated in the ablative regime is 

directly related to the surface vaporization process. In this manuscript, the laser 

vaporization process in vacuum is modeled using an implicit finite difference technique. 

The surface pressure resulting from vaporization serves as a source for acoustic wave 

generation. The acoustic displacements generated by a laser source in the ablative 

regime are calculated. The calculations are then compared to experimentally measured 

surface displacements in aluminum specimens. Acoustic wave generation is considered 

for the limited range of vaporization in which absorption of light in the vapor can be 

neglected. Processes beyond this point are discussed qualitatively. Good agreement is 

seen between theory and experiment over a limited irradiance range. 

A novel technique for laser ultrasonic system sensitivity increase through spatial 

modulation of the incident laser source is presented. The method uses a transmission 

mask to generate linearly frequency modulated (chirped) surface waves. The laser source 

is extended in space allowing for a large amount of laser energy to be utilized in the 

generation process before the surface damage threshold is exceeded. The received signal 

is subsequently processed suing a matched filter. The application of a matched filter to a 

linearly frequency modulated signal leads to the compression of the in time. The 

technique allows for temporal resolution to be maintained while surface damage is 

avoided. 
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Temporal modulation of laser sources for the generation of acoustic waves is 

considered. Methods for controlling the pulse length of a conventional Q-switched laser 

system are given. The effects of varying incident laser pulse length on the thermoelastic 

generation of acoustic waves are discussed. For materials exhibiting strong surface 

absorption, it is found that there exists a pulse length which optimizes the laser generated 

signal amplitude while avoiding surface damage. A linear systems approach for 

determination of pulse length effects is presented. This allows for the calculation of 

acoustic waves with an arbitrary temporal profile based on a theoretically or 

experimentally determined reference signal. Finally, pulse length effects on two 

composite specimens are evaluated and the results discussed. 
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CHAPTER 1 

Introduction 

The principles and uses of optical techniques for the generation 
and detection of ultrasound have been discussed extensively in the 
literature. The generation of ultrasound through laser heating of a 
material surface was first considered by White (1963)1 soon after the 
advent of the laser. Several excellent reviews of the progress in the field 
of laser ultrasonics are available.2-3,4 Laser ultrasonic techniques have 
several advantages over other inspection methods, making them an 
attractive option for select applications. A review of some advantages and 
disadvantages of laser based techniques is presented in Table 1-1. 
Unfortunately, poor sensitivity and high cost of laser ultrasonic systems 
are currently limiting industrial application. In general, implementation is 
limited to situations where laser inspection methods present the only 
available solution, or the few cases that prove cost effective. The goal of 
the current work is to increase the sensitivity of optical generation and 
detection systems. The work focuses on the laser/materials interaction that 
occurs during the generation of ultrasonic waves, and considers a number 
of methods by which laser ultrasonic systems can achieve greater 
sensitivity through control of the laser generation source. 
In order to help define the detectability limits of interferometer systems, 
the signal-to-noise ratio (SNR) can be evaluated. For the purposes of this 
discussion, the SNR is defined as: 

ADVANTAGES DISADVANTAGES 
1.   Non-contacting 
(couplant problems eliminated and no surface 

loading) 

1.    Sensitivity 
(optical techniques generally have 

significantly lower sensitivity than other 
methods) 

2.   Remote 
(access to hostile environments) 

2.    Relatively Expensive 

3.    Rapid Scanning Capability 3.    Sample Surface Condition Important for 
Interferometry 

4.    Allow Operation on Geometrically 
Awkward Specimens 

4.    Requires Laser Safety Precautions 
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5.   Can be used as an Ultrasonic Point Source 
6.   Broadband (ultra-high frequency 

generation and detection possible) 
7.   Reproducible Source 
8.   Laser Interferometry Offers an Absolute 

Calibration Standard 

Table 1-1 Summary of advantages and disadvantages of laser ultrasonic 
methods. 

S2(t   ) 
SNR = -^-^ 

n*(t) 
(1.1) 

where s^O is the maximum signal amplitude and n„2(t) is the mean 
squared noise amplitude. 

Several sources of noise exist in the detection laser, 
photodetectors, and processing electronics of an optical detection system. 
Amplitude and wavelength fluctuations in the laser source contribute to 
noise. Room vibrations and relaxation of optical components can 
introduce additional noise into the system. Finally, noise in the optical 
detector and associated electronics include 1/f noise, thermal noise, and 
shot noise. Most of these noise sources can be controlled through, for 
example, reducing system bandwidth, decreasing component 
temperatures, and employing electronic noise rejection schemes. 
Ultimately, the SNR of an optical detection system is limited by shot 
noise. Shot noise is unique among the noise sources given in that it 
depends on signal amplitude. Consequently, shot noise limited 
performance of an optical detection system can be achieved easily by 
increasing the light incident on the detector such that the shot noise grows 
to dominate all other noise sources.5 

Expressions for the SNR of several optical detection techniques, including 
optical beam deflection, and path stabilized, heterodyne, and Fabry-Perot 
interferometry, have been presented in the literature.5,6 For all of these 
systems, assuming shot noise limited detection, the following relation 
holds: 

82P 
SNRoc-S- 

B 
(1.2) 
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where 5m is the maximum amplitude of the signal to be detected, P is the 
optical power incident on the detector, and B is the bandwidth of the 
detection system. By maximizing this quantity, the ability of a laser 
ultrasonic system to detect acoustic signals can be optimized. 
The SNR can be increased through the use of a stable high-power laser in 
the detection system. If interferometric detection techniques are used on 
optically rough or highly absorbing surfaces, only a fraction of the laser 
light incident on the material will make it back to the detection system. 
The remainder of the light is lost to scattering or absorption processes. 
The SNR increase that can be achieved through increasing P is dictated 
by the power of the detection laser and the ability of the interferometric 
detection system to collect scattered light. The limit is generally set by the 
cost and availability of stable high- power laser sources. 
Further enhancement requires refinement of the laser generation process, 
such that either the amplitude of the laser generated ultrasonic signals is 
increased or the bandwidth decreased. In the former case, the limit on the 
amplitude of laser generated ultrasonic systems is generally dictated by 
the damage tolerance of the surface under inspection. If damage is to be 
avoided, then generation must take place in the thermoelastic regime. The 
amount of laser energy that can be used for acoustic wave generation can 
not exceed that which heats the surface above the vaporization 
temperature. If a certain amount of surface damage is acceptable, the 
amplitude of laser generated acoustic signals may be further enhanced 
through generation in the ablative regime. In order to achieve SNR 
increase through bandwidth reduction of the optical detection system, the 
bandwidth of the laser generated acoustic waves must also be decreased to 
match that of the detection system. This requires control of the laser 
generation source in time and/or space in such a way that narrow 
bandwidth acoustic signals are generated. 

Signal processing techniques offer another means by which SNR 
increase may be obtained. In the simplest case, signal averaging can be 
performed. This may be a viable option when generating ultrasound with a 
high repetition rate pulsed laser. Filtering techniques may also be used. If 
the noise is white, as is the case for a shot noise limited optical detection 
system, the SNR can be maximized by using a matched filter. The 
maximum SNR is given by: 

2E 
SNRmax=^

L 
max       -^ 

(1.3) 

210 



where E is the total signal and No/2 is the noise spectral density. This 
indicates that the SNR can be enhanced by increasing the energy in the 
signal to be detected. The Weiner filter has also been used for the filtering 
of laser ultrasonic signals.7 This filter minimizes the mean squared error 
between the detected signal and a reference signal. Signal averaging, 
matched filtering, and Weiner filtering are three examples of signal 
processing techniques that can be used to enhance the detectability of laser 
generated acoustic signals. Other established signal processing techniques 
will invariably be incorporated into future laser based inspection systems. 

The acoustic signal generated by a laser source depends on the 
thermal, optical, and elastic properties of the specimen, and on the 
characteristics of the laser source. For a given materials system, the laser 
pulse parameters can be chosen such that the SNR of the detection system 
is maximized. There are four laser pulse parameters to consider: temporal 
profile, spatial profile, energy, and wavelength. Of these, wavelength 
probably offers the least flexibility, although harmonic crystals do provide 
some choice in wavelength for a given Q-switched laser system. 
Wavelength considerations are not discussed at length in the present work. 
Various aspects of temporal and spatial modulation of laser light used for 
the generation of acoustic waves will be presented. Also, the effects of 
increasing laser pulse energy beyond the point at which surface 
vaporization is initiated will be considered. A brief outline of the coming 
chapters is presented below. 

Chapter 2 presents an analysis of laser generation of acoustic 
waves in the ablative regime. The process of laser vaporization in vacuum 
is modeled using an implicit finite difference technique. As a surface is 
heated beyond the melting point, the surface melts and the melt front 
propagates into the material. Continued heating brings the material to the 
vaporization temperature. The vaporization process exerts a force on the 
material surface which serves as a source for acoustic wave generation. 
The changes in the thermal and optical properties of materials with 
temperature are discussed. Acoustic wave generation is considered for the 
limited range of vaporization in which absorption of light in the vapor can 
be neglected. Processes beyond this point are discussed qualitatively. The 
amplitude of acoustic waves generated in the ablative regime is directly 
related to the surface vaporization process. A greater understanding of this 
relationship may allow for the acoustic signal to be used simultaneously 
for elastic property determination or materials inspection and surface 
damage monitoring. 

Chapter 3 presents a novel technique for laser ultrasonic system 
sensitivity increase through spatial modulation of the incident laser source. 
The method uses a transmission mask to generate linearly frequency 
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modulated (chirped) surface waves. The laser source is extended in space 
allowing for a large amount of laser energy to be utilized in the generation 
process before the surface damage threshold is exceeded. The received 
signal is subsequently processed using a matched filter. The application of 
a matched filter to a linearly frequency modulated signal leads to the 
compression of this signal in time. The advantage of this technique is that 
it allows for the incident laser source to be distributed over a large area in 
space and subsequently compressed in time upon reception through 
application of the matched filter. Temporal resolution is maintained while 
surface damage is avoided. The SNR is maximized through matched 
filtering in accordance with Eq. (1.3). 

Chapter 4 deals with the temporal modulation of laser sources for 
the generation of acoustic waves. Methods of controlling the pulse length 
of a conventional Q-switched laser system are first described. The effects 
of varying incident laser pulse length on the thermoelastic generation of 
acoustic waves is considered. For materials exhibiting strong surface 
absorption, is found that there exists a pulse length which optimizes the 
laser generated signal amplitude while avoiding surface damage. A linear 
systems approach for determination of pulse length effects is presented. 
This allows for the calculation of acoustic waves with an arbitrary 
temporal profile based on a theoretically or experimentally determined 
reference signal. Finally, pulse length effects on two composite specimens 
are evaluated and the results discussed. 
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CHAPTER 2 

Laser Generation of Ultrasound in the Ablative Regime 

2.1      Introduction 

In this chapter, the effects of increasing the incident laser irradiance on the 

generation of acoustic waves are examined. Laser generation of acoustic waves in 

the thermoelastic regime has been well characterized.1'2'3'4 In the low irradiance 

regime, before vaporization takes place, the amplitude of laser generated acoustic 

waves shows a linear increase with pulse energy.s The laser generation process is 

somewhat less well characterized in the ablative regime. Experimentally, it is well 

known that there is a large enhancement in the amplitude of the longitudinal wave 

generated in the ablative regime. Qualitative models have been presented which 

indicate that the shape of the ablative waveform can be understood as being a 

superposition of a thermoelastic (point expansion) source and a force acting 

normal to the surface.5,6 The physical origin of the normal force is the momentum 

transfer from the evaporating species. These papers also show that the time 

dependence of the normal force, at low irradiance ablation, follows that of the 

incident laser pulse. At high irradiance ablation, the forcing function assumes a 

step function time dependence. Although the shape of the displacements predicted 

in the literature agrees well with experiment, indicating that the assumed forcing 

functions are correct, the amplitude and shape of the normal forcing function is 

deduced qualitatively without solution of the laser vaporization problem. 
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A more quantitative analysis of the generation of acoustic waves in the 

ablative regime was recently presented.7 Many of the important issues concerning 

laser vaporization were addressed. Still, assumptions made considering, for 

example, the distribution of forces exerted within the laser spot, indicate the need 

for further study in this area. Unfortunately, there are few comparisons of 

experimental and theoretical displacements and the agreement between 

experiment and theory presented is only moderate. 

An understanding of laser generation of acoustic waves in the ablative 

regime is important for several reasons. Generating in the thermoelastic regime, it 

is often important to use as much laser energy as possible while remaining below 

the vaporization threshold. Thus it is desirable to be able to predict the laser 

irradiance at which a detectable amount of vaporization takes place. Next, there 

are many ultrasonic inspection applications in which a small amount of surface 

damage can be tolerated. In these, cases, it is important to have a good 

understanding of the vaporization process to take advantage of the large acoustic 

wave enhancement possible in the ablative regime. This may allow for the 

generation of high amplitude acoustic signals, while staying below some specified 

damage tolerance level. If the relationship between acoustic signals produced in 

the ablative regime and surface damage incurred is well characterized, then the 

acoustic signature can be used simultaneously for process monitoring / inspection 

and surface damage monitoring. It also allows for the possibility of using acoustic 

signals for direct monitoring of the laser/material interaction region to track 

vaporization, surface temperature, etc. 

Laser-material interactions have been discussed extensively in the 

literature.8'9'1011 The interaction involves the coupling of laser energy into a 

material, resulting in melting and vaporization; ejection of ions, molecular 

species, and fragments; shock waves; plasma initiation and expansion; and a 
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Author 

Ready12 (1965) 

Anismov 13(1969) 

Allman14 (1976) 

Knight 15(1979) 

Rosen etal.16 (1982) 

Chan et. al.17 (1987) 

Zweig (1991)18 

Vertes et.al.19 (1994) 

Aden and Kreutz20 (1996) 

Anismov etal.21 (1996) 

Results 

material removal by vaporization 

discontinuities across Knudsen layer in vacuum 

material removal by vaporization and melt flow 

discontinuities across Knudsen layer as function of flow Mach number 

thermal and impulse coupling of laser energy 

material removal by vaporization and melt flow 

laser drilling depth and recoil (medical) 

laser ablation of Cu, processes in vapor 

material removal and plasma dynamics 

three dimensional model of plume expansion 

Table 2-1 Models of the laser/materials interaction process. 

hybrid of these and other processes. There are many laser ablation models in the 

literature used for the analysis of such processes as laser drilling, pulsed laser 

deposition of thin films, removal and patterning of thin films, laser fusion, and 

inductively coupled plasma atomic emission spectroscopy (IES-AES). For a 

given application (laser irradiance and thermal and optical properties of the 

material under illumination), it is important to consider the relevant processes and 

to model the situation accordingly. A brief history of several laser/material 

interaction models is presented in Table 2-1. A more complete historical 

development is given in references 8-11 and the references therein. 
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2.2      Modeling Laser Generation of Ultrasound in the Ablative Regime 

2.2.1   Introduction 

A schematic view of the laser ablation process is given in Figure 2-1. The 

surface is first heated to the melting point, at which time the melt front begins to 

propagate into the material. Continued heating brings the material to the 

vaporization point. Adjacent to the surface is a thin layer (on the order of a few 

Incident Laser Pulse 

▼   t 

undisturbed air 

air behind shock front 

process in 
vacuum 

vapor 

■*—       ., Knudsen layer ,.       —► expulsion of 
melt 

vapor front 

,  liquid phase 

solid phase melt front 

Figure 2-1 Schematic view of laser ablation processes. 
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molecular mean free paths) known as a Knudsen layer, where the vapor is not in 

translational equilibrium. Across this layer, there are discontinuities in 

temperature, pressure, and density. Beyond the Knudsen layer is a region of 

expanding vapor. In this analysis it is assumed that vaporization takes place in 

vacuum. In this case, the gas dynamic processes outside of the Knudsen layer 

need not be considered and the vapor expands freely into vacuum. Continued 

heating well beyond the vaporization point will lead to vapor breakdown and 

absorption of the incoming laser light through photo-ionization and inverse 

bremsstrahlung processes. For simplicity, vapor breakdown is not considered in 

this model, although it will be discussed in the results section. Thus the 

applicability of the model holds up to the point when laser light absorption by the 

vapor becomes significant. 

2.2.2   Pressure Induced on the Surface Through Vaporization 

The core vaporization model to be presented has seen widespread use in 

the study of various laser ablation phenomena. The relevant physical processes 

outlined below are generally accepted and numerous examples can be found in 

the literature. For example, apart from several of the references in Table 2.1, 

models showing reasonable similarities have been presented recently by Fahler22 

(1996), Svendsen23 (1995), and Tsui24 (1994). The model describes laser heating 

of a finite plate and is limited to the case where plasma processes do not play an 

important role. 

The heating induced by a Q-switched laser can be described by the heat 

equation with a source term to include light absorption: 
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^(K, (T) £5iiÖ) + I0(t)a(TXl - R(T)) exp(-a(T)x) 
OX OX 

i=l,2 (2.1) 

where p is the mass density, C is the heat capacity, K is the thermal conductivity, 

I is the incident laser power density, R is the reflectivity, and a is the absorption 

coefficient. The subscript i is 1 for the solid phase and 2 for the liquid. The 

temperature dependence of the thermal and optical properties of the material is 

shown. One dimensional heating is assumed. This approximation, neglecting 

radial heat flow from the illuminated region, holds reasonably well as long as the 

laser spot size is sufficiently large in comparison to the characteristic heat flow 

distance or thermal diffusion length in the material on the time scale of interest. 

The thermal diffusion length is given by: 

L*^ = (4Kt)" 

(2.2) 

where K is the thermal diffusivity and t is the time scale over which heating will 

be calculated. In the present case, the time scale may be taken as the laser pulse 

length. The thermal diffusion length in aluminum (K = 1.12 cmVsec) heated with 

a Q-switched laser pulse (t = 15ns) is found to be equal to 2.59um. Therefore the 

one dimensional model can be expected to hold reasonably well as long as the 

incident laser spot size is sufficiently greater than 2.59 um. 

Considering the heating of a plate in vacuum, Eq. (2.1) is augmented by 

the condition that no heat flows across either bounding surface. This is given as: 
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dx at        x = 0, L 

(2.3) 

where L is the plate thickness. The boundary condition between the solid and 

liquid phases (at the melt front) is included as: 

s dx       'dx       ' dt 

(2.4) 

where K,. is the thermal conductivity of the solid at temperature Tj at the 

interface, K, is the thermal conductivity of the liquid at temperature T2, Lx is the 

latent heat of melting and ds/dt is the interface velocity. 

When the surface temperature exceeds the equilibrium vaporization 

temperature at a given pressure, ablation begins. In this model, the ablation 

mechanism is treated simply as thermal evaporation from a hot surface. Assuming 

a Maxwellian velocity distribution for the vapor particles, the vapori:zation front 

velocity is given by:11 

5sv^     VlP(T)_ 

I2 

(2.5) 

dt - 
(2rcMRTs)

2 

where Vt is the molar volume, p(T) is the equilibrium vapor pressure at the 

surface temperature Ts, M is the molar mass, and R is the universal gas constant. 

The equilibrium vapor pressure may be found from consideration of the 

Claussius-Clapeyron equation as follows: 
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p(T) = p0exp(Lv(5-^)) 
RTJlv 

(2.6) 

where T^ is the equilibrium vaporization temperature at ambient pressure p0, and 

Lv is the latent heat of vaporization. The boundary condition to be evaluated at 

the liquid-vapor interface is given as: 

ST, 5s 
K, —L = Lv -+ 1 dx       v dt 

(2.7) 

The vapor near the vapor-solid interface is not in translational equilibrium. This is 

achieved within a few mean free paths by collisions between particles.in a 

Knudsen layer region. The Knudsen layer is analyzed by treating this region as a 

gas dynamic discontinuity across which conservation of mass, momentum, and 

energy are applied.13,15 This process has previously been modeled for the vacuum 

case (Anismov13,1969) as well as for cases when the surface is surrounded by air 

at various pressures (Knight15, 1979). For the present analysis, in order to 

calculate the pressure applied to the sample surface, it is only necessary to know 

the pressure jump across the Knudsen layer under vacuum conditions. This has 

been found to be:1315 

2^ = 0206 
Psat 

(2.8) 
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where p^ is the saturated vapor pressure. The pressure exerted on the surface can 

now be found by consideration of the momentum- flux through the Knudsen layer 

as follows:18 

Psurface=P vapor 0 + 7*0 

(2.9) 

where y is the ratio of specific heats in the vapor and My is the flow Mach number 

outside of the Knudsen layer. For the case of a monatomic gas evaporating into 

vacuum we have y = 5/3 and My = 1. Combining Eqs. (2.8) and (2.9) under these 

conditions, the relation between the saturated vapor pressure and the pressure 

exerted on the specimen surface is: 

Psurface = 0549p,,, 

(2.10) 

2.2.3   Expulsion of Melt 

The analysis above allows for the calculation of material removed from 

the material surface through surface vaporization. Vaporization pressure induced 

melt flow can provide another significant means of material removal and, in fact, 

is the primary source of material removal in laser cutting processes with long 

(non Q-switched) laser pulses. Several models of vaporization induced melt flow 

have been reported in the literature.141718 In order to simply approximate the 

extent of melt flow induced by a Q-switched laser pulse in the irradiance range 

of interest, the model of Allmen14 (1976) has been adopted. A sketch of the 
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Incident Laser 
pulse 

expulsion 
of melt 

Figure 2-2 Melt ejection mechanism given by Allxnen (after Allmea") 

process is given in Figure 2-2. The vaporization pressure is assumed to act as a 

piston on the melt layer of thickness Sme!t. From volume work considerations this 

pressure causes the melt to flow with a velocity given by: 

vffiek=(2p/p)- 

(2.11) 

where p is the surface pressure and p is the density. The melt is assumed to be 

expelled from the edge of the ffluminated spot leading to the following 

approximation for surface recession velocity due to melt expulsion: 
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melt 

(2.12) 

where 8 is the melt thickness and r is the laser spot radius. The melt begins to 

flow when the radial pressure force exceeds the surface tension of the liquid 

metal. Eq. (2.12) can only be expected to give an order of magnitude 

approximation for the amount of melt flow. It will be shown that melt flow is not 

predicted to be a primary source of material removal for Q-switched laser 

sources. Under other conditions, especially when ablating with long pulse lasers 

at moderate power levels, closer attention must be paid to the flow of melt if 

accurate material removal rates are to be calculated. 

2.2.4   Calculation of Laser Generated Acoustic Waves 

The above analysis allows for the calculation of pressure exerted on the 

surface of a material due to vaporization. The laser generated acoustic signal, in 

the ablative regime, can be considered the superposition of an acoustic signal 

resulting from the thermoelastic expansion of the material and an acoustic signal 

resulting from material ablation. In the present analysis, the thermoelastic 

component of the acoustic signal is calculated using a model directly following 

that of Spicer.2 This model has shown excellent agreement with experiment for 

the laser generation of acoustic waves in the thermoelastic regime.2 The force 

exerted on the surface due to vaporization is assumed to act as a normal point 

force with an amplitude and time dependence determined with the vaporization 

model outlined above. 

The axially symmetric elastic wave problem is set up in cylindrical 
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Figure 2-3 Geometry for elastic wave solution. 

coordinates for both the thermoelastic and ablative source calculation, with the 

geometry illustrated in Figure 2-3. The calculation is performed on an infinite 

plate of thickness h. The decomposition of the displacement vector is written as:25 

u = 

w- 

8t    dz 

af>, i a(rz) 
dz    T   dr 

(2.13) 

where displacement components in me r, 6, and z directions are given by u, v, 

and w respectively. The vector potential is given by \jf (8 component) and the 

scalar potential by <|>. The two potentials satisfy the following wave equations: 
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d2$    Idty    d2$ _ 1 a 
2    a* 2 dr"     r dr    dzL     c{ dt 

d2\\f    1 ö\j/    d2\|/    \j/ _  1 d2\j/ 

"&r+r"5T + "äzr~r2 ~c2 dt2 

(2.14) 

Where CL and Cy are the longitudinal and shear wave speeds respectively. 

The stress-displacement relations are given as: 

,du    dw. 
dz    or 

(2.15) 

Where k and \i are the Lame constants. These equations are augmented by the 

initial conditions. If the plate is at rest prior to t = 0 then: 

<|>(r,z,0) = i(r,z,0) = \|/(r,z,0) = \|/(r,z,0) = 0 

(2.16) 

Equations (2.13)-(2.16) specify the elastic wave problem under 

consideration and must now be supplemented by the appropriate stress boundary 

conditions. It has been shown that, under certain conditions, the thermoelastic 

source can be modeled as an equivalent elastic boundary source.2 These 

conditions are given as 1) the point of observation is outside the volume defined 

by significant thermal diffusion 2) the plate is optically and thermally thick on the 

time scales of interest 3) optical energy is converted to heat close to the irradiated 
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boundary and 4) the thermal propagation speed in the material is equal to the 

longitudinal wave speed. Assuming these conditions hold, then following Hankel- 

Laplace transformed boundary conditions may be used:2 

P,    K(ß2
+P

2), 
b2^ SS 

X.CH-LU=£(-VH
,;

F
OYQOQ(P)Q(S) 

Tra(Hl-L)z=0 =^(-—)YQ0Q(P)Q(S) 
D S 

XB(H-LU=T1,(H1-LU=0 

where: 

ß2=b2s2+p2 

„2 S    ,   „2„2    ,       ■! e  = —t-a s +p 
K 

(2.17) 

where H and HI denote Hankel transforms of zero and first order respectively, L 

denotes the Laplace transform, p is the Hankel variable, s is the Laplace variable, 

Q(P) and Q(S) are the Hankel transform of the incident laser pulse spatial profile 

and Laplace transform of the laser pulse temporal profile respectively, a and b are 

the reciprocal of the longitudinal and sheer wave speeds, K is the thermal 

diffusivity, Q„ is the absorbed laser energy, and y = Ba2a/p where B is the bulk 

modulus and a is the coefficient of thermal expansion. 

The system of Eqs.(2.13-2.16) is solved using a transform technique. A 

Laplace transform is performed with respect to the temporal variable and a 

Hankel transform with respect to the radial component of displacement. The 

resulting ordinary differential equations [Eqs. (2.14)] are then solved subject to 

the boundary conditions given in Eq. (2.17). Detailed expressions for the Hankel- 

Laplace transformed potentials have been presented elsewhere2 and will not be 

227 



22 

repeated here. The displacement components at the point of observation are found 

by numerically inverting the transformed solution. 

The component of displacement resulting from the vaporization of the free 

surface is found using the same set of Eqs. (2.13-2.16) subject to the following 

boundary conditions: 

2wc 

T =T =T = 0 v rz z=0     * rz  z=h        zz  z=h 

(2.18) 

where Q in this case indicates the magnitude of the forcing function. The system 

of Eqs. (2.13-2.16, 2.18) is then solved using the same Laplace-Hankel transform 

technique outlined for the thermoelastic case, with the Laplace-Hankel 

transformed boundary conditions given in this case by: 

2K 

Tra(Hl-L)z=0=0 

X.(H-LU=TB(H1-LU=0 

(2.19) 

The solution is convolved with the temporal and spatial dependence of the 

forcing function as indicated by the vaporization routine. It is assumed that the 

spot size over which the pressure acts on the surface is much smaller than the 

specimen thickness. Under this assumption, the pressure can be integrated over 

the spot yielding a force, Q, which acts at a point on the surface. Thus the spatial 

extent of the ablative source is ignored. At present, only the epicentral solution is 
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considered in which case simplifications allow for the normal displacement 

component to be expressed analytically. Solutions for other points on the plate 

may be obtained numerically using a routine analogous to that used for the 

thermoelastic case but replacing Eq. (2.17) with Eq. (2.19). Finally, only the first 

longitudinal and shear wave arrivals will be considered, making the solution valid 

for the time range given by: 

(2.20) 

where h is the plate thickness and CL is the longitudinal wave speed. 

The epicentral displacement component normal to the surface and valid in 

the time frame indicated above is given by:6 

u .   te = f(t)*—£—(^i- + ^-) ep,oenter      v ß TtuhC2    a      dt 

where: 

a (S^+C-2)(2S2
L+C-2)2 h 

gL    [(2S2
+C-)2-4S2(S2

L+C-2)-5(S2
+C-2)"5]2    l     CL

; 

Q -4S2(S2+CZ2XS^+C-2) h 
8s    [(2S2

+C-2)2-4S2(S2
+C-)^(S2

+C-)^]2    l     C/ 

. -> t2      1 S2=(^y-4-) L     h2    C2 

Ss=(4-^r) s    V    C2 

(2.21) 
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where u is the shear modulus, Q and CT are the longitudinal and shear wave 

speeds, and f(t) is the normalized temporal dependence of the forcing function. 

The final epicentral displacement is taken as the superposition of the 

displacements calculated from the thermoelastic and ablative acoustic response as 

follows: 

" total      "■ thermoelastic       ** ablative 

(2.22) 

The model used for calculation of the thermoelastic response assumes that 

the process is linear. Although this approximation neglects the variation in 

thermal and optical properties with temperature, it will be kept for the sake of 

tractability in the present analysis. In the ablative regime, the absorbed energy is 

divided into the energy used for material heating and the energy spent on material 

vaporization. This is expressed as follows: 

Eabsorbed       Evaporation      Cheating 

(2.23) 

The amplitude of the thermoelastic signal is assumed to scale linearly with the 

laser energy used for material heating, Qheating, while the remainder of the energy 

is expended in the vaporization process. 
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2.3      Laser Vaporization Solution 

2.3.1   Finite Difference Equations 

The one dimensional laser vaporization problem is solved numerically 

using an implicit finite difference program. Finite difference techniques involve 

splitting time and space into finite temporal and spatial steps, and approximating 

the differential equation with a difference equation at each of these points.26-27 

Truncation error is inherent in finite difference techniques and stems from the 

replacement of the differential equation with a difference equation. The 

difference equations are derived from a Taylor series expansion of the derivatives 

about spatial and temporal points of observation. Simple finite difference schemes 

(i.e. the simple implicit and simple explicit techniques) have a truncation error 

corresponding to 0(At)+0(Ax)2 where At is the time step and Ax is the space step 

chosen. Smaller truncation error leads to faster convergence of the approximate 

solution to the exact solution. 

Explicit techniques, characterized by the fact that at each time level there 

is a single unknown that can be solved for, are extremely simple to implement but 

also suffer from stability criterion which limits the size of the steps that can be 

chosen. Implicit techniques are characterized by the fact that at every time step a 

system of i equations must be solved simultaneously, where i refers to the number 

of space steps chosen. In the thermal case, these equations are generally obtained 

from i-2 internal nodes and supplemented by two boundary conditions. Implicit 

techniques, though slightly more difficult to implement, do not suffer from 

stability criterion limitations and thus the space and time steps may be freely 

chosen. 

Finite difference techniques are commonly used for the solution of heat 

conduction problems.25 They are also one of the most common techniques for the 
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numerical evaluation of laser heating problems, with numerous examples 

appearing in the literature. The finite difference method chosen was presented by 

Richtmeyer26 and utilized for laser heating problems by Singh and Narayan28 

(1989). It is a higher order implicit method with a truncation error of 

0(At)2+0(Ax)4 leading to much faster convergence than the simple explicit or 

simple implicit method. The solution approach closely follows that of Singh and 

Narayan.27 

The thermal conductivity equation and melt front boundary condition are 

made non-dimensional by introducing the following quantities 

x s      Q _ T   Tm T„K,t 
x _-     s -i    e = —=-    t = m 2 
Xl
"l        Sl"l Tm 

ri       u 

(2.24) 

where Tm is the melting temperature of the material, L is the latent heat of 

melting, and 1 and K2 are constants having units of length and thermal 

conductivity respectively. These constants can now be substituted into the thermal 

conductivity equation (2.1) yielding the non-dimensional form: 

ae    ^w^e 
 = C7(T)(—r- + 
a,     ^ Aax2 

1 
K(T) 

5K(t) 
ox. 

50 
dx! 

where: 

«rm- K(T)L 

I0(l-R)e~~Ll2 

T^K2CV(T) )+      ^2 

K2Cv(T)T„ 

(2.25) 

where Cv is the volume heat capacity given by p(T)Cp(T). The melt boundary 

condition may also be expressed in non-dimensional form as: 
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dt     K25xj    K2öxj 

(2.26) 

In order to solve the differential equation the time and space variables are 

separated into small steps (At and Ax) as follows: 

Xj = iAx  i = 0,1,2,....N 

t! = nAt  n = 0,1,2 M 

(2.27) 

The position of the melt front interface is followed explicitly and is given by: 

Sj = qAx +EAX -0.5<S<0.5 

(2.28) 

where q is a whole number corresponding to a nodal point and s is the fractional 

distance to the nodal point as illustrated in Figure 2-4. 

The position of the vaporization front is not tracked explicitly but is 

instead followed through energy balance considerations. In this approach the heat 

flux carried away by the vapor is regarded as a surface heat sink in the same 

manner as the laser pulse is considered a heat source. The velocity of the 

vaporization front is determined at every time step [Eq. (2.5)] providing a 

distance over which the vaporization front moves given by: 

s*=^TAt 

(2.29) 
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Figure 2-4 Description of nodes around melt front. 

The major expenditure of energy during the vaporization process is 

through the latent heat of vaporization. A more complete description of energy 

expenditure includes additional terms given by the latent heat of melting, the 

enthalpy of the vapor, and the kinetic energy of the vapor. These may be 

summarized in an effective latent heat of vaporization given by: 

AH^=AHlv+AHIm+Hv+^ 

(2.30) 

where H^ is the enthalpy of the vapor and the final term represents the kinetic 

energy of the vapor. Eq. (2.30) is dominated by the latent heat of vaporization 
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while the kinetic energy term is quite small and can be neglected. The 

vaporization energy loss mechanisms are considered in the model and although 

the vaporization front is not tracked explicitly, an effective vaporization front is 

monitored. This gives a reasonable estimation for laser induced vaporization 

depth. At every time step, the pressure exerted on the specimen is also tracked 

using Eqs. (2.6) and (2.10) allowing for the melt flow calculation. The energy lost 

to melt flow is much less than the energy lost to vaporization and is also 

neglected in the model. 

The finite difference expressions have been outlined in the literature27, but 

as they form the core of the vaporization model solution they will be repeated 

here for completeness. A detailed account of various higher order implicit finite 

difference techniques, and the derivation of the particular technique used, is given 

in Richtermeyer.26 The material is divided into i spatial nodes as indicated by Eq. 

(2.27). Of these nodes, expressions must be derived for i-4 general nodes or nodes 

that are not adjacent to a boundary. Complementing these, expressions must be 

derived for each of the four boundaries considered. These include the front and 

back surface boundary conditions and the boundary conditions at each side of the 

melt front. For the general nodes, Eq. (2.25) is expressed in finite difference 

form by: 

nn+l     -I nn+1     i Qn+1     C 

ai+1      6 CT;,!      6 G;        3 

(7 + a1Rw) + ^-(i + b1RH) + 5Le-2R1) + Atar+ir) ^(I + a^ + ^I + b^ + ^cf ■ n+1 ' - 
ci+1   6 aM   6 a;   3 

(2.31) 

where: 

I0(l-R)e-Ll2 „£_ a„b.={2K,±Ki+1-K 
T^K2CV(T) *'     (Ax)2 "'    X    ' 2K, 
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The left side of Eq. (2.31) contains three unknowns which are the 

temperatures of three nodal points at the time step n+1. At each time step, Eq. 

(2.31) is written as a series of linear equations for all i. The boundary conditions 

at the front and back surfaces of the plate are applied simply by forcing the 

temperature at imaginary nodes adjacent to the interface to have the same 

temperature as those at the interface, eliminating the driving force for heat flow 

across the boundary. These conditions are given as: 

0n    _ Qn Qn       — Qn 

-1  ~ U0 WN+1 - bN 

(2.32) 

These equations state that at for time (n) the temperature nodes adjacent to 

the plate boundaries are kept at the same temperature as the boundary nodes. If 

the position of the melt front is some distance s from the nodal point q, where e 

was defined above, then boundary conditions are also necessary for the nodal 

points q-1 and q+1. If the melt front is taken to be at the melting point, then the 

temperature of the node corresponding to the interface is known and 9q =0. The 

boundary conditions at nodes q-1 and q+1 are then given by: 

(node q-1) 

1 2(At)an , , l 2(At)cya_, 
q_2S(2 + en)    (Ax)2(2 + £n+y      q_lV      3(l + sn)    (Ax)2(l + sn+1)' 

1 2(At)an , 1 2(At)aa_, 
en ,( + —V   ;  q"2   ) + 9n ,(2 ,     q     ) +source q-2S(2 + sn)    (Ax)2(2 + sny      q_lV      3(l + en)    (Ax)2(l + 8n)y 

(2.33) 
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(node q+1) 

1 2(At)aq+2 + 1 2(At)gq+1 

q+2S(2-sn)    (Ax)2(2-sn+1);     q+1^     3(l-sn)    (Ax)2(l-sn+1y 

1 2(At)a0+2 1 2(At)aQ+1 
9"   ( +     V ) + eo+i(2 / ) + source q+2V3(2-sn)    (Ax)2(2-£n/     q+lV     3(l-sn)    (Ax)2(l-e«y 

(2.34) 

The final expression necessary to solve the finite difference routine is an 

equation describing the movement of the melt at subsequent time steps. This 

expression is found by applying the finite difference scheme to the melt front 

boundary condition [Eq. (2.26)] and is given as follows: 

cn+l      cn _    (At)Ks    /-nn+l 2      S        _ ft„+l   1      g ,  An     2      £     ^ fin       1      S    ■ 
$1      Sl"2(Ax)K2

(bq+1l-sn+1    Hq+22-sn+1    bq+,l-En    Uq+22-sJ 

(At)Kt ,2 + s"1 , l + sn+1 2 + s° l + e° 
"V°q-1   1 n+i        Dq-2 n n+1  "'" °q-l   1   ,   ~n        °q-2 ~   .   _ n > 2(Ax)K2 

v q-1 1 + En+I       q_' 2 + £n+1      q_1 1 + £n      q"z 2 + £c 

(2.35) 

Equations (2.29)-(2.35) are solved using a numerical routine written in C 

included in Appendix 1. These equations are also supplemented by the equations 

describing the vaporization and melt flow processes [Eqs. (2.5)-(2.12)]. The 

solution allows for the calculation of the temperature at any point in the plate 

(within the 1-D approximation), the position of the melt front, an approximation 

for the flow of melt from the illuminated region, the position of the vaporization 

front, the pressure exerted on the specimen due to vaporization, and the division 

of energy between the heating and vaporization processes. In the vaporization 
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model, an effort has been made to address all of the physical processes that are 

expected to play a dominant role. 

2.3.2   Temperature Dependence of the Thermal and Optical Properties 

Accurate solution of the thermal problem presented requires that the 

temperature dependence of the thermal and optical properties of the material 

under investigation be considered. In the present study, the vaporization of pure 

(99%) aluminum is evaluated. The physical properties of aluminum showing the 

strongest temperature dependencies are the thermal conductivity and heat 

capacity. The temperature dependence of these properties can be included in the 

finite difference program so long as the property can be represented as a 

continuously differentiable function of temperature. The nature of the solution 

technique presented does allow for discontinuities in the functions at the melting 

temperature. 

Values for the thermal conductivity and heat capacity as function of 

temperature up to the critical temperature are available in the literature29 and have 

been plotted in Figure 2-5. The thermal conductivity shows a decrease from room 

temperature to the melting point, at which point there is a significant drop. The 

heat capacity shows a strong rise up until the melting point, followed by an abrupt 

drop to a constant value recommended throughout the melt region. The data have 

been approximated as follows: 

Thermal Conductivity 

Below melting point: average value = 2.287 W/cmK 

Above melting point = .549+(5.249e-4)T-(1.338e-7)f+(7.941e-12)1e W/cmK 

Heat Capacity 

Below melting point = 3.728+(.0105)T-(1.482e-5)7e+(9.142e-9)J3cal/molK 

Above melting point: constant = 7.59 cal/molK 
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Figure 2-5. Temperature dependence of thermal conductivity (top) and heat capacity 

(bottom) in aluminum. 
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Polynomial fitting functions used in the vaporization model for thermal 

conductivity (top) and heat capacity (bottom). 

The  polynomial  fits  given  above  are plotted in  Figure  2-6  against the 

recommended values. 

The density change with temperature is quite small, going from about 2.6 

g/cm3 in the solid to about 2.3 g/cm3 in the liquid state and decreasing slightly 

with temperature from that point on.28 This change has been neglected in the 
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calculations. Data on the optical properties of aluminum as a function of 

temperature have proven more difficult to find. The resistivity of aluminum as a 

function of temperature has been included in Figure 2-7 with the data below the 

melting point taken on a 99.9% Al, .05% Si 5 mil wire and the data above the 

melting point taken in 99.99% pure Al.28 The resistivity rises markedly in 

aluminum with temperature with a strong positive jump occurring at the melting 

point. Under the assumptions of the Drude model it can be shown that the 

absorptivity is proportional to the square-root of the resistivity. Over the limited 

range of temperatures given in Figure 2-7, a fourfold increase in absorptivity 

from the room temperature value is estimated using this model. 

Unfortunately, the absorptivity is also a strong function of surface 

condition and reported values differ quite substantially. The American Institute of 

Physics Handbook30 reports values of room temperature reflectivity at the lum 
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Figure 2-7 Temperature dependence of the resistivity of aluminum. 
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wavelength as .912 (calculated), .940 (evaporated mirror coating), and .733 

(polished). Another source reports specular reflectance from 70% to above 90% 

for polished aluminum at room temperature.28 In the work of Tsui et.al.24 (1994), 

the reflectivity of sputter coated aluminum films at .248|am was measured to be 

83% at room temperature and calculations were performed assuming reflectivity 

of the melt was between 40% and 80%. Theoretically, the room temperature 

reflectivity at .248jmi should be similar to that at l^m.29 Difficulties encountered 

determining the temperature dependence of the reflectivity have led to the use of 

a constant reflectivity in the vaporization model. The value used should be 

considered an average reflectivity over the heating cycle that the surface goes 

through. Currently, the reflectivity is estimated and used as a fitting parameter in 

the model, with the values chosen held within the reasonable ranges indicated 

above. Finally, the absorption depth is not expected to change significantly with 

temperature and the temperature dependence is thus ignored. 

2.3.3   Test of the Model 

In order to verify the working of the finite difference routine, a test was 

performed to compare the output of the model with a simple laser heating 

problem which was solved analytically. The case chosen was the one dimensional 

heating of a half space by a constant amplitude laser pulse turned on at t = 0. The 

solution to this problem may be found simply with the surface temperature given 

as follows: 

T^« =^^-^ + ^exp(a2Kt)(l-erf(aV^)) 
Kvrc     Ka    Ka 

(2.36) 
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where I is the incident laser pulse power density, K is the thermal diffusivity 

given by K=K/pC where C is the heat capacity, and a is the absorption depth. The 

following room temperature values for aluminum were used: thermal 

conductivity K=2.37 W/cmK, heat capacity C = .90 J/gK, absorption coefficient 

a= lOnm, reflectivity R = 80%, and incident laser pulse irradiance I = 

20MW/cm2. The resulting plot of the analytical solution [Eq. (2.36)] and the 

finite difference solution is plotted in Figure 2-8. The finite difference solution 

shows excellent convergence to the exact solution indicating that the core of the 

finite difference is working appropriately. It should be noted that two other 

simpler finite difference schemes were implemented prior to choosing the current 

technique; the simple explicit method and an implicit method known as the 

Crank-Nicholson method. These methods failed to achieve the level of 

convergence displayed by the current 
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Figure 2-8 Laser heating comparison of exact solution with solution obtained through 

finite difference technique. 
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technique. This test was run a number of times with various thermal and optical 

properties input into the routine. 

Further testing of the model is difficult, as the numerical technique was 

chosen because of the lack of availability of analytical solutions to the problem 

considered. This test is taken as evidence that the finite difference scheme was 

programmed properly and indeed converges to the exact solution in simple cases. 

2.3.4   Predictions of the Laser Vaporization Model 

The thermal and optical constants used in the vaporization model are 

summarized in Table 2-2. The temporal profile of the laser pulse is assumed to be 

Gaussian with the FWHM of the pulse chosen to match that of the laser pulse 

used experimentally. In the program examples to be given in this section, the 

FWHM of 

Absorption depth 

Melting Temperature 

Vaporization Temperature 

density 

atomic weight 

latent heat of melting 

heat capacity (T^,,,) 

heat capacity (T^T,,,) 

lOnm 

933K 

1785 @ pressure of 1.013e5 g/sec2m 

2.69 g/cm3 

26.98 g/mol 

10790 J/mol 

3.72+0.01T-1.48e-5T2+9.14e-9T3cal/molK 

7.59 cal/molK 

Thermal Conductivity (T<T J    2.28 W/cmK 

Thermal Conductivity (T>TJ    .549+5.24e-4T-1.33e-7T2+7.54e-12T3 

Reflectivity .6 - .9 (variable) 

latent heat of vaporization 293420.0 J/mol 

Table 2-2 Summary of thermal and optical properties of aluminum used in vaporization 

model. 
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the laser pulse is taken as 16ns. It is noted here that the temporal shape of the 

pulse used in the thermoelastic acoustic wave generation program is that of a 

modified Gaussian presented by Schleichert etal.31 (1988) The difference 

between these two forms is slight and is expected to have negligible effects on the 

theoretical results. A comparison of these two pulses with the experimentally 

measured laser pulse is given in Figure 2-9. Reasonable agreement is seen 

between the theoretical and experimentally measured laser pulse shapes. 

Figure 2-10(top) shows the calculated surface temperature of the 

aluminum specimen at incident intensities of 100 and 150 MW/cm2. In this case, 

the reflectivity was taken to be 80%. Both of these pulses heat the surface 

beyond the melting point. When the surface temperature reaches the melting 

point, the melt front begins to propagate into the material. At some point in the 

material, towards 

"I  l n  l  I  i  i  i  i  r 

-40 -20 0 20 40 60 80 100120140 

Time (ns) 

Figure 2-9 Comparison of Gaussian and modified Gaussian laser pulse models with 

experimentally measured laser pulse. 
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the end of the laser pulse, the melt front velocity slows to zero and the direction 

of propagation reverses. As the melt front recedes back towards the surface, the 

temperature of the melt approaches the melting temperature. Thus the entire 

liquid layer approaches the equilibrium melting temperature and the driving force 

for thermal diffusion away from the surface ceases. This is the origin of the flat 

region in the heating curves, at which the temperature remains at the melting 

point. When the melt front makes it back to the surface and solidification is 

complete, surface cooling proceeds. The position of the melt front as a function 

of time is given in Figure 2-10(bottom). As expected, the higher amplitude pulse 

begins to melt the surface sooner with the melt front propagating significantly 

further into the material. 

Figure 2-10 shows that the surface temperature remains below the 

vaporization temperature for the 100 MW/cm2 pulse while slightly exceeding the 

vaporization temperature for the 150 MW/cm2 pulse. Although the equilibrium 

vaporization temperature is exceeded at this irradiance, much higher 

temperatures must be reached for a significant amount of vaporization to occur. 

Material removal through melt expulsion and surface vaporization are compared 

in Figure 2-11 at an incident laser intensities of 400 and 450 MW/cm.2 The 

material removal is quite rapid and ceases immediately after the laser pulse ends. 

The major contribution to material removal is predicted to be surface 

vaporization. At 400 MW/cm2 about 70% of total material removed is from 

surface vaporization while at 450 MW/cm2 this figure increases to about 80%. 
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Figure 2-11 Material removal through surface vaporization and melt flow at 400 (top) and 

450 MW/cm2 as a function of time. 

The total predicted ablation depth, and contributions of both melt flow 

and surface vaporization, is summarized in Figure 2-12. The material removal or 

ablation depth indicated in Figure 2-12 represents the maximum ablation depth 

expected. The would occur at the center of the incident laser spot where the 
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Figure 2-12        Total material removal, and contribution of melt flow and surface vaporization 

processes as a function of incident laser irradiance 

irradiance is the highest. On aliiminum specimens, and in the power density range 

considered here, the amount of material removal is not expected to exceed 

400nm. The general trend indicated by the model is that contribution of the melt 

flow mechanism to the total material removed decreases with increasing laser 

pulse power density. This is in qualitative agreement with the work of Chan and 

Mazumder17 (1987) showing a similar trend. Direct comparison with these results 

are difficult as they were calculated using a steady state model for long pulse 

laser heating in the kW power regime. 

As discussed earlier, laser vaporization exerts a surface pressure on the 

material. Through Eqs. (2.6) and (2.10), this pressure can be related to surface 

temperature. Assuming radial melt flow induced by the vaporization, reasonable 

results should be possible without considering any additional forces exerted by 
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the melt. The pressure exerted on the specimen at 300, 400, and 450 MW/cm2 is 

given 
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Figure 2-13 Pressure pulses exerted on the  surface  at various  incident laser pulse 
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in Figure 2-13. The first observation of note is that the pressure pulse amplitude is 

a very strong function of surface temperature, increasing sharply with incident 

laser irradiance. The second observation of interest is that the temporal extent of 

the pressure pulse is a function of incident laser irradiance. For an incident laser 

pulse with a 16ns FWHM, the FWHM of the pressure pulse increases from about 

8ns at 200MW/cm2 to about 13ns at 800MW/cm2. The principle mechanism 

accounting for this is simply that the surface is held well above the vaporization 

point for a longer amount time for high irradiance laser pulses. The peak pressure 

exerted on the specimen surface is given as a function of irradiance in Figure 2- 

14. The peak pressure is expected to be on the order of tens of MPa reaching a 

maximum of about 150 MPa at an incident laser power density of 750 MW/cm2. 

The final demonstration of the calculated results involves the division of 

energy between the heating and vaporization of the sample. Significant amount of 

energy can be utilized in the vaporization process, especially in the high 

irradiance laser vaporization regime. Two plots illustrating this point are given in 

Figures 2-15 and 2-16. Figure 2-15 shows the maximum surface temperature 

reached as a function of incident laser irradiance. At low irradiance illumination, 

Power Density (MW/cm2) 
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Figure 2-15 Maximum surface temperature reached as a function of incident laser pulse 

irradiance. 

200 400 600 

Power Density (MW/cm2) 

Figure 2-16 Fraction of energy used for sample heating as a function of incident laser pulse 

irradiance. 

the curve is essentially linear, with all of the absorbed laser energy being used for 

sample heating. At higher irradiance illumination, there is a marked shift in the 

curve illustrating the effect of energy removal through vaporization. Figure 2-16 

gives the fraction of energy used for sample heating. It can be seen that at the 

highest power density levels considered here, up to about 15% of the absorbed 

energy is utilized for vaporization. 

2.3.5   Spot Size Considerations 

The fact that the vaporization model is one dimensional presents some 

difficulty in calculating the force exerted in the surface during vaporization with 

an incident laser pulse which has a Gaussian irradiance distribution in space. 
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Under the assumptions of this model, the incident laser pulse is thermally large 

but acoustically small. This essentially means that the laser spot is large with 

respect to the thermal diffusion length but small compared to the thickness of the 

specimen. The acoustic approximation allows for the laser to be considered a 

point source in space. Under this approximation, the pressure exerted on the 

surface must be integrated over the spatial distribution of this pressure on the 

surface. This yields the total force exerted on the specimen. In general, unless the 

irradiance of the laser is constant over the surface of the specimen, the spatial 

distribution of the pressure pulse does not follow the spatial distribution of the 

incident laser pulse. This follows from the nonlinear nature of the vaporization 

process. If the incident laser irradiance is small and the spatial distribution is 

Gaussian, vaporization may take place at the center of the illuminated spot giving 

a spatially sharp pressure pulse. If it is larger, the pressure pulse will act over a 

broader area. 

In order to determine accurately the force exerted on the specimen, the 

spatial distribution of the pressure pulse must be calculated as a function of peak 

laser irradiance. The peak pressure exerted on the specimen as a function of peak 

irradiance is first calculated. This is subsequently mapped to the Gaussian 

irradiance distribution over space. A point is chosen within the laser spot, the 

power density seen at that point calculated, and the pressure exerted on that point 

determined. This gives the spatial distribution of the pressure pulse over the 

surface. This distribution is then fit to a Gaussian and the spot size of the pressure 

pulse estimated. Once the Gaussian spot size is determined it needs only be 

integrated to arrive at the amplitude of the forcing function. The incident laser 

pulse profile is given in Figure 2-17(top) with the pressure pulse profile and 

corresponding Gaussian fit given in Figure 2-17(bottom) for an incident laser 

pulse irradiance of 750MW/cm2. The gaussian fit for the pressure is satisfactory 

and should give a reasonable estimate for the total force exerted on the specimen. 
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Figure 2-17 Spatial iiradiance distribution of the incident laser pulse (top) and spatial 

distribution of pressure pulse on the surface shown with Gaussian fit. 

The importance of taking spot size considerations into account is illustrated in 

Figure 2-18 showing the effective pressure pulse spot size estimations as a 

function of incident laser power density. 
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Figure 2-18 Calculated pressure pulse radius as a function of incident laser pulse irradiance 

2.3.6   Solution Procedure:   Coupling  of Vaporization  and Acoustic  Wave 

Generation 

The final solution for acoustic wave generation in the ablative regime 

requires a coupling of the vaporization program with the elastic wave solutions 

presented previously. The procedure used for this calculation is outlined below: 

1. The vaporization program was run at a number of peak laser power density 

levels and the spatial distribution of the pressure pulse at each level is 

computed. 

2. The normal force Green's function [Eq. (2.21)] is computed with the 

derivatives taken numerically. 
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3. The force exerted on the surface is calculated by integration of the temporal 

profile of the pressure pulse at a given power level over the spatial profile of 

the pressure pulse. 

4. The surface displacement caused by vaporization is calculated through the 

convolution of the forcing function computed in step (3) and the Green's 

function from step (2). 

5. The surface displacement caused by thermoelastic expansion is calculated 

through a program modeled after that given by Spicer2 (1991). 

6. The surface displacement caused by thermoelastic expansion is scaled 

according to the amount of absorbed laser energy used for sample heating. 

7. The surface displacements from the thermoelastic expansion and vaporization 

processes are summed giving the final output. 

2.4      Experimental Setup and Procedure 

2.4.1   Experimental Setup 

The basic experimental setup used is presented in Figure 2-19. A 

Continuum Surelite NdrYAG laser operating at 1064nm and 532nm was used for 

the generation of ultrasound. The pulse length was in the 7-16ns range 

(depending on pump energy). The laser pulse was sent through a variable 

attenuator consisting of a half wave-plate and a polarizer. The polarization of the 

light was kept fixed with the energy throughput controlled by the rotation of the 

wave-plate. The pulse was then sampled using a partially reflecting (20% R) 

NdrYAG laser mirror. The sampled light was directed to a Molectron energy 

meter. 
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The vacuum chamber was constructed using a T-section vacuum fitting. 

Optical ports were fit on two sides allowing for specimen interrogation by the 
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Figure 2-19        Experimental setup for vacuum ablation testing. 

laser pulses. The other ports attached to the vacuum pump and a thermocouple 

pressure gauge. A DV-4D thermocouple was used, with the pressure readout 

performed with a Kurt J. Lesker 500TC digital meter. The specific vacuum pump 

used only allowed for ejqperimentation in rough vacuum. The minimum pressure 

in the chamber did not get below about 0.2 torr. The vacuum chamber was 

mounted on a translation stage allowing for laser sampling across the surface of 

the specimen. 

The surface displacement was detected using a stabilized Mchelson 

interferometer. The operation of this type of interferometer is well known32 and 

will not be described in detail here. The light source for this interferometer was a 
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CW Coherent laser operating at 532nm with a maximum power output of 

approximately lOOmW. The photodetectors used in the interferometer were Thor 

Labs (model # FDS010) with a specified rise time of less than Ins. The signal 

from the phtotodetectors was amplified using a Comlinear (model # E201) with a 

specified bandwidth of 95 MHz. The amplified signal was captured with 

Lecroy9354 Digital Oscilloscope with a sample rate of 500MHz. The bandwidth 

limit on the Michelson Interferometer was set by the Comlinear amplifier and is 

assumed to be approximately 95 MHz. 

2.4.2   Experimental Procedure 

The aluminum samples were 6mm thick 99% Al purchased from Alpha 

Aesar Chemical. The samples were cut to 1" disks and hand polished down to 

lum diamond suspension. The room temperature specular reflectivity of the 

polished sample was measured with a He-Ne laser operating at 632nm. The laser 

was reflected at near-normal incidence into a Newport (model # 805) power 

meter and the power reading compared with the total output from the laser. The 

specular reflectivity was determined to be approximately 77%. Although the 

profile of the reflected beam appeared show a strong specular component, this 

measurement should be taken as only a rough approximation of the room 

temperature reflectivity, as the diffusely reflected light was not collected. 

One of the most critical parameters necessary for the calculation of the 

surface displacement caused by laser vaporization is the spatial profile of the 

incident laser pulse. At the beginning of each experiment, the generation and 

detection lasers were first aligned to be co-linear at the specimen surface. The 

specimen was then removed from the chamber and a knife-edge inserted at the 

position of the back surface of the specimen as shown in Figure 2-20. The 

fraction of total energy making it past the knife edge was then recorded as it was 
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scanned, in 20 um steps, across the laser spot. Assuming a single transverse mode 

laser pulse, the spatial distribution of the incident laser pulse is Gaussian and the 

amount of energy making it past the knife-edge is given simply as: 

'measured 

W 

total, 

K  k-<o 

2(x2H-y2))dxdy 

w 

(2.37) 

where the knife edge is perpendicular to the y direction at a position given by k 

and moves through the spot in the positive y direction. The variable w in this 

expression describes the spot size with the FWHM being given by approximately 

w/0.849. Eq. (2.37) must be inverted in order to solve for the laser spot size. The 

solution for w follows the method of Khosrofian and Garetz33(1983). 

knife edge positioned at 
back surface of specimen   V 

Energy meter 

Nd:YAG Micrometer stage 

Figure 2-20        Setup for evaluating generation laser spot size. 
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After the spot size was determined, the fraction of incident energy 

sampled by the energy meter was measured and the energy meter calibrated. The 

vacuum chamber was then pumped down to approximately 0.2 torr. The 

interferometer was adjusted for maximum detection sensitivity. The generation 

pulse was fired three times at the specimen surface prior to data collection in 

order to "clean" the surface and remove any surface contamination. The signal 

was then averaged 5 to 10 times and transferred to a PC for analysis. The 

specimen was translated between shots such that a new region of the surface was 

sampled at each energy level. The temporal laser pulse profile (as illustrated in 

Figure 2-9) was recorded at the conclusion of each experiment. 

2.5      Experimental Results/ Comparison with Theory 

2.5.1    Longitudinal wave amplitude 

The goal of this work was to relate the acoustic waves generated in the 

ablative regime (and corresponding surface displacement) to the physical 

processes occurring at the surface during the ablation process. All of the surface 

displacements measured experimentally were taken on epicenter through 6 mm 

thick aluminum (99%) specimens. All theoretical calculations were done using 

the thermal and optical parameters summarized in Table 2-2, and assuming a 

constant reflectivity of 67%. The reflectivity was essentially used as a fitting 

parameter with 67% considered to be a reasonable choice, although somewhat 

lower than expected, based on the considerations of Section 2.3. 

The displacement corresponding to the longitudinal wave arrival gives a 

direct indication of the validity of the model in predicting the vaporization force 
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exerted on the surface. Although there is a small normal force exerted during 

thermoelastic generation, as modeled through Eq. (2.17), the normal force exerted 

by the vaporization process becomes dominant quite soon after vaporization is 

initiated. Thus when generating in the ablative regime, the amplitude of the 

displacement corresponding to the longitudinal wave arrival is almost completely 

dictated by the vaporization force as modeled through the vaporization routine. 

Figure 2-21 shows the maximum longitudinal wave amplitude as a 

function of incident laser irradiance as measured with two different specimens 

(both having undergone the same polishing procedure). The data sets are both 

included to show the relative consistency of the experimental procedure. The spot 

size measured in each of these cases was 520um. The amplitudes measured in 

each experiment are relatively consistent, with the variations in the data sets most 

likely caused by slight differences in the surface condition of the samples. The 
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Figure 2-21        Peak longitudinal wave amplitude as a function of incident laser irradiance. 

Data taken in two sets of experiments presented. 
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curves show a low amplitude linear region up until about 200 MW/cm2 

corresponding to laser generation in the thermoelastic regime. This is followed by 

a rapid rise in amplitude which, at high power densities, appears to show a linear 

relationship with irradiance and corresponds to laser generation in the ablative 

regime. In general, plots related to Figure 2-21 are quite common in the 

literature.4-5 Unfortunately, the experimental procedure usually consists of 

increasing the power density through the translation of a focusing lens. This 

changes the spot size at each step and is not expected to give a curve similar to 

the one presented here. Also, the fact that this experiment was performed in 

vacuum makes it difficult to compare to other results presented in the literature. 

The coupling of pulsed lasers with materials is often described through the 

use of thermal and impulse coupling coefficients. The thermal coupling 

coefficient is defined as the fraction of laser pulse energy incident on the 

specimen which is retained as heat. The impulse coupling coefficient is defined as 

the ratio of the impulse delivered to the specimen to the laser pulse energy. 

Impulse coupling coefficients have are commonly measured using a ballistic 

pendulum arrangement,16,34 although reported methods also include measurement 

of the acoustic signal through contact piezoelectric transducers35 and 

interferometry36. In order to interpret the results of Figure 2-21 more closely, it is 

instructive to consider a quantity, analogous to the impulse coupling coefficient, 

in the present case. The coupling coefficient chosen represents the generation 

efficiency and is in units of surface displacement /irradiance. This is plotted in 

Figure 2-22 verses incident laser irradiance. Although this is simply another way 

of presenting the data, it accentuates certain features. Through the relationship 

between the force exerted on the surface and the displacement caused by the 

longitudinal wave, this quantity represents the amount of force exerted on the 
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specimen (per unit of incident irradiance) at each incident irradiance level. This 

gives an effective efficiency of ultrasonic wave generation at each irradiance 
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Figure 2-22        Longitudinal wave generation efficiency presented as a function of incident 

laser power density. 

level. The curve is a constant for generation in the thermoelastic regime as 

shown in the low irradiance region. There is then a sharp rise in efficiency 

corresponding to the beginning of strong vaporization beginning at about 200 

MW/cm2 and lasting until about 400 MW/cm2. Beyond this point, the efficiency 

continues to increase, but at a somewhat slower rate. At the highest power density 

levels the efficiency appears to be approaching a constant value. 

The outlined regimes may be explained through the comparison of 

experimental and theoretical longitudinal wave amplitudes as a function of 

irradiance as given in Figure 2-23. The theoretical and experimental curves are 
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seen to compare well in functional form up until about 300 MW/cm2. It is 

believed that this is the point at which processes in the vapor start to become 

important. The current model does not take into account processes in the vapor 

and is limited to the low power laser ablation regime. In both Figures 2-22 and 2- 

23, there is evidence of a linear region where thermoelastic generation occurs, a 

vaporization region in which plasma processes do not play an important role, and 

a high irradiance region where plasma processes play an important role. 

In order to correctly interpret the break between experiment and theory 

seen in Figure 2-23, a more detailed discussion of processes occurring in the 

vapor will be given. During strong vaporization, the temperature in the vapor can 

rise to a point where excited atoms and free electrons exist in the vapor in 

relatively high concentrations. These species are capable of absorbing laser light 

directly. Ground state aluminum in the vapor is not able to absorb laser light 
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Figure 2-23 Experimental and theoretical amplitude of longitudinal wave displacement as a 

function of incident laser irradiance. 
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directly, as the photon energy considered here is below the ionization threshold. 

There are two dominant absorption mechanisms in aluminum: absorption of free 

electrons through the inverse bremsstrahlung process and photoionization of an 

excited state. The absorption coefficient from the inverse bremsstrahlung process 

is given by:37 

ß = (1.35)(10-35)A.3Te-
5Ne(Ne + ^ÄL) 

(2.38) 

where ß is the inverse absorption length, X is the laser wavelength, Te is the 

electron temperature, NAL and Ne are the neutral atom and electron number 

densities respectively. The absorption cross section for photoionization of an 

excited state is given approximately by:37 

a = (7.9X10-18)A3fe"5 
hv     E 

(2.39) 

where E is the energy of ionization of the excited state, IH is the hydrogen 

ionization potential, and v is the frequency of laser radiation. The total power 

deposited in the vapor may then be given as: 

P = (ß + N*a)Iave 

(2.40) 

where N* is the density of excited atoms and Iave is the average irradiance of laser 

radiation in the vapor. 
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Equations (2.38)-(2.40) require a detailed treatment of the processes 

occurring in the vapor in order to determine the concentration of various species 

present, as well as the distribution of these species in space. This is beyond the 

scope of the present work. One interesting observation, though, is the strong 

wavelength dependence of the absorption processes. In order determine the effect 

of wavelength on the generation of acoustic waves in the ablative regime, the 

experiment was repeated at a wavelength of 532nm. The results of this 

experiment and comparison with theory are presented in Figure 2-24. The spot 

size was measure to be 520um (the same as for the 1064 nm case) . 

Unfortunately, the laser pump energy had to be increased and, combined with the 

nonlinear conversion of the doubling crystal used, resulted in a pulse width of 

10ns. The data was fit to a reflectivity of 65%, showing an expected decrease 

from the value fit at 1064 nm. 
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Figure 2-24        Theoretical and experimental longitudinal wave amplitude at .532um as a 

function of incident laser power density. 
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The theoretical results (run with 10ns pulse width, R=65) agree better 

with the experimental results at this wavelength indicating a reduction of 

absorption in the vapor at 532nm. The functional form of the curves agrees until a 

higher longitudinal wave amplitude indicating that stronger vaporization must 

take place at this wavelength before processes in the vapor become important. 

This provides further evidence of the ability of the model to evaluate laser 

vaporization processes in the transparent vapor regime. 

2.5.2   Calculated and Experimental Displacement 

The are several difficulties involved in the estimation of the shape of 

acoustic waves generated in the ablative regime. The first arises in the calculation 

of the thermoelastic displacement. This calculation is done with a program 

modeled after that of Spicer2 (1991) which does not accommodate the 

temperature dependence of the thermal properties or any changes in generation 

conditions resulting from surface melting. Other than the temperature dependence 

of the heat capacity and thermal conductivity described in detail in Section 2.3, 

there is also a large increase in the coefficient of thermal expansion between room 

temperature (aAL=23xlO"6) and the melting point (aAL=37xlO"6). The room 

temperature values for the physical properties were used in the model, with the 

exception of thermal conductivity for which the average solid value used in the 

vaporization model was incorporated. The resulting waveform was approximately 

a factor of two smaller in amplitude than observed experimentally. As the shape 

of this waveform was similar to the experimental observation, and the focus of 

this work was not to solve the difficult problem of thermoelastic wave generation 

with temperature dependent physical parameters, the waveform was simply scaled 

to fit the observed waveform in the thermoelastic regime. This is equivalent to 
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adjusting the thermal conductivity and thermal expansion coefficient, both of 

which have a linear relationship with amplitude. The agreement in shape between 

the experimental and theoretical signals indicate that the effects of surface melt 

are not critical to the calculation. 

The   experimental   and   theoretical   results   for   generation   in   the 

thermoelastic regime are given in Figure 2-25. These show reasonable agreement 

-i ■ 1 ' 1 ' r 
150MW/CT? 

-, 1 1 1 1 , 1 1 1 1 1 1 1- 

08 1.0 12 1.4 1.6 1.8 2.0 12 

Timefjis) 

Figure 2-25 Experimentally measured (top) and calculated thermoelastic waveforms used 

in ablation model. 
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in shape with the exception of the amplitude of the step occurring at the shear 

wave arrival time of 2us which is somewhat smaller in the experimental case. The 

thermoelastic displacement given in Figure 2-25 was used in the calculation of all 

of the theoretical waveforms. The amplitude was scaled with the amount of 

energy incorporated for sample heating. As previously discussed, this equals the 

incident laser energy minus the energy used in the vaporization process. 

The calculated surface displacements for the power density range from 

180-450 MW/cm2 are given in Figure 2-26. The displacement corresponding to 

the longitudinal wave arrival grows rapidly, becoming the dominant feature at 

high power levels. This arrival is also seen to broaden somewhat as the power is 

increased. This development can be compared to the experimental displacements 

measured (1.064 jam) in the power range 200-800 MW/cm2 given in Figure 2-27. 

Although the development of strong vaporization in the transparent vapor model 

is much more rapid than is observed experimentally, the general development of 

the shape of the waveforms is quite similar. Notable differences include the 

amplitude of the negative going spike after the longitudinal wave arrival, which is 

larger in the experimental case. Also contrasting somewhat is the amplitude of the 

shear step which is diminished in the experimental case. 
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Figure 2-26        Theoretical ablative signals predicted in aluminum (continued) 
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Figure 2-27        Experimental signals measured in aluminum, (continued) 
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Figure 2-27 Experimental signals measured in aluminum, (continued) 

A direct comparison of experiment and theory at 300 MW/cm2 is given in 

Figure 2-28. The shape of the waveforms, including the temporal extent of the 

longitudinal arrival, agree reasonably well. The theoretical signal is slightly larger 

in amplitude. It is interesting to note here that the theoretical and experimental 

results both indicate that the FWHM of the first longitudinal arrival is somewhat 

narrower than the FWHM of the incident laser pulse (approximately 75% 

narrower at 300MW/cm2). It will also be noted that in the high irradiance region, 

after vapor processes become important, the shape of the waveforms still agree 

well. Figure 2-29 gives a comparison of the waveform calculated at 420 MW/cm2 

with the waveform taken experimentally at 700 MW/cm2. Although the model 
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greatly underestimates the power density at which this waveform is generated, the 

essential features of the waveform match those seen experimentally. The 

implications of this will be discussed in the following section. 
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Figure 2-28 Theoretical and experimental waveforms at 300 MW/cm2. The bottom figure 

shows a comparison of the first longitudinal arrival. 
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Figure 2-29 Theoretical (420 MW/cm2) and experimental (700 MW/cm2) waveforms. The 

bottom figure shows a comparison of the first longitudinal arrival. 

2.6      Discussion of Ablative Generation of Ultrasound 

The laser generation of ultrasound in the ablative regime is a complex 

process. The results presented show reasonable agreement with experiment in the 

low irradiance regime. Although the model presented is still somewhat 

qualitative, as the sample reflectivity was estimated through the evaluation of 

experimental results, the agreement between theory and experiment indicate that 
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the primary physical processes involved are modeled appropriately. The 

reflectivity chosen at 1.064um (67%) seems quite low and, although it may be 

reasonable based on the discussion of Section 2.3, the reflectivity as a function of 

temperature of a given sample has to be evaluated in order for the vaporization 

routine to be used in a completely quantitative fashion. The shape of the ablative 

waveforms, and the evolution of the shape as a function of irradiance, perhaps 

show the most promising results at present. 

The vaporization model, as presented, can be coupled to a model 

describing processes occurring in the vapor. In vacuum, these processes can be 

modeled independently with the only effect of the vapor being the shielding of 

the sample surface from incoming laser radiation. There are a number of models 

of vapor processes available in the literature, some of which have been given in 

Table 2-1. In the simplest case, the vapor can be described as column that 

expands at a given rate above the surface and has a given optical density. In this 

case, the effect of the vapor is to attenuate incoming radiation according to: 

IsuI&ce=
In,cidenteXP(-ad) 

(2.41) 

where a is the absorption coefficient in the vapor and d is the vapor thickness. 

Both d and a are expected to be a strong function surface temperature. The results 

of Figure 2-29 are somewhat surprising in that the waveform predicted at 420 

MW/cm2 agrees very well with the experimental waveform measured at 700 

MW/cm2. This indicates that vapor processes which are shielding the incident 

radiation do not have an abrupt onset, at least not that can be observed through 

the acoustic signal generated, suggesting that vaporization in the high irradiance 

regime may be approximated by: 
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surface \  max /  incident 

(2.42) 

where cQ^J is a fraction dependent on only the maximum power density. This 

essentially states that the incident laser is smoothly attenuated by the vapor with 

the attenuation coefficient determined by the peak irradiance of the laser pulse. 

This is obviously an approximation, as the attenuation of the vapor must evolve 

as the surface is heated, but Figure 2-29 indicates that it may be a reasonable one 

in tiie irradiance range considered. 

One implication of the previous approximation is that the vaporization 

model, as presented, may be able to be used for vacuum process monitoring at 

irradiance levels higher than those corresponding to vapor shielding initiation. 

For instance, the amplitude of the longitudinal arrival could be measured and 

compared to theoretical values. A match of theoretical and experimental 

amplitudes indicates a certain amount of light absorption at the surface, 

independent of plasma processes in the vapor or the surface condition 

(reflectivity) of the sample. The model can be used in a quantitative fashion, with 

no variable parameters, to monitor vaporization rate, melt front position, or 

surface temperature. Possible applications for this type of remote vacuum sensing 

include process monitoring in laser drilling and cutting operations, inductively 

coupled plasma atomic emission spectroscopy (ICP-AES), and laser deposition of 

thin films. 

Another development in the model would be the inclusion of processes 

occurring in the air under atmospheric conditions. The vacuum model presented 

here used the jump conditions across the Knudsen layer originally presented by 

Anismov (1968). These conditions only hold in the strong vaporization limit 

where the flow just outside the Knudsen layer is sonic. This limits the model to 

cases where the vapor pressure is large compared to the atmospheric pressure. 
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The jump conditions for cases where this approximation breaks down are treated 

by Knight (1979). Vaporization in the presence of a backing gas is expected to 

increase the pressure exerted on the surface relative to vaporization in vacuum. 

The other effect that can be significant is that there can be an increase in the back- 

flow of evaporating species. Anismov predicts only 18% of the evaporating 

species will not make it through the Knudsen layer in vacuum, but this percentage 

can increase substantially in the presence of a backing gas. This may limit the 

amount of material removed from the surface when irradiating in the presence of 

a backing gas. 

Laser generated ultrasonic signals in air are more complex to evaluate 

than those in vacuum. Direct comparisons between waveforms generated in air 

and vacuum are presented in Figure 2-30. This experiment was performed in 

aluminum with a spot size of approximately 350 urn. The spot size was not 

measured with the knife edge technique, but rather estimated from examination of 

the surface damage site under an optical microscope. The experimental setup was 

not changed between the vacuum and air data sets, with the chamber pumped 

down to 0.2 torr prior to the experiment in vacuum. Figure 2-3 0a shows a 

comparison of signals generated in air and vacuum under relatively low 

irradiance. A larger longitudinal wave displacement is seen in air. It is also noted 

that after the longitudinal wave arrival, the signal in air does not return to the 

baseline as it does in the vacuum case. The force exerted on the specimen is seen 

to approach the temporal dependence of a step function under strongly ablative 

conditions. This is shown in Figure 2-30b, comparing waveforms generated in air 

and vacuum at higher laser irradiance. Figure 2-30b also indicates that, at high 

irradiance levels, the amplitude of the longitudinal wave displacement in vacuum 

is significantly larger than that in air. It is proposed that the lower amplitude 

signal observed in air is a result of increased plasma shielding from the 

breakdown of air above the surface. 
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Figure 2-30        Comparison of waveforms generated in air and vacuum at a) 284 MW/cm2 and 

b) 660 MW/cm2. 
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Figure 2-3 Ob illustrates that, for highly ablative generation of ultrasound 

in air, pressure is exerted on the surface for a significant amount of time after the 

laser pulse ends. This was previously assumed to be a result of the vaporization 

process continuing for a substantial period of time after illumination.5,6 This effect 

was not observed in vacuum and the present results indicate that strong 

vaporization occurs, even at high intensities, only during the time of illumination. 

The surface cools quite rapidly at the conclusion of the pulse. Thus the step 

function time dependence of the forcing function observed in high irradiance 

laser ablation experiments is apparently due to the presence of the backing gas 

and most likely caused by the ignition of a laser supported combustion wave or 

laser supported detonation wave in the plasma.11,38,39 A detailed discussion of these 

high irradiance phenomena is beyond the scope of this work and the reader is 

referred to the given references. 
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CHAPTER 3 

Spatial Modulation of Incident Laser Light 

As will be discussed, there has been a considerable amount of work 

presented in the literature on spatial modulation of laser sources for the 

generation of acoustic waves. A new technique has recently been developed 

which builds upon the existing work. This technique has been summarized in a 

manuscript entitled "Laser Ultrasonic Chirp Sources for Low Damage and High 

Detectability without Loss of Temporal Resolution."1 This manuscript is 

presented in its entirety in the current chapter. 
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3.1      Abstract 

Linear frequency modulated (chirped) acoustic signals have been 

generated using a pulsed laser spatially modulated by an absorption mask at the 

surface of a test material. By distributing the laser energy over an area, instead of 

focusing it to a point or line source, the peak power density of the laser source 

can be kept below the damage threshold of the material. The corresponding 

chirped ultrasonic surface wave packet produced by the source, although 

extended in time, is detected and processed using a matched filtering technique 

which compresses the packet into a pulse, thus preserving temporal resolution for 

accurate time-of-flight measurements. Matched filter processing of the chirped 

wave packet has been compared with the same processing applied to a 

narrowband tone burst wave packet. Processing of the chirped signal permits easy 

separation of overlapped return echoes which could not be resolved when 

narrowband signals were used. Finally, by compressing the energy within a 

chirped signal to a single detection spike, an apparent 15-fold enhancement in 

signal-to-noise ratio is observed. 

3.2      Introduction 

Signal detectability is arguably the key parameter to be optimized when 

designing a laser-based system for remote generation and detection of ultrasonic 

signals. The dependence of signal-to-noise ratio upon signal amplitude, signal 

bandwidth, and laser brightness (both for generating and detecting sound) are 

well understood.23'4'5'6 Increasing the ultrasonic signal amplitude directly 

improves signal-to-noise ratio and, correspondingly, the detectability of a laser 
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ultrasonic system. There are limits, however, to increasing source laser power as a 

means of generating large ultrasonic amplitudes. In some configurations and for 

particular materials systems, it may not be possible to achieve a satisfactory 

signal-to-noise ratio at laser power densities below the damage threshold for the 

material being tested. As an alternative to single pulse excitation, phased array 

systems have been proposed and demonstrated which can enhance surface and 

bulk wave amplitudes to acceptably high levels without requiring any individual 

element of the array source to exceed the material ablation threshold.7'8'910 

Alternatively, periodic spatial arrays1112'1314*15 and temporal modulation of a 

single source1617 have been demonstrated to produce tone burst acoustic signals to 

which a receiving detector can be tuned, thus providing enhanced immunity to 

broadband noise. Among these three methods for modifying the laser source for 

enhanced detectability, the spatial array methods for generation of narrowband, 

tone burst ultrasound are the simplest and least expensive to implement. The 

disadvantage of these narrowband methods, however, is that the temporal extent 

of the wave packet generated by such sources can lead to uncertainty in time-of- 

flight measurements important for many practical laser inspection and 

measurement applications. 

A new laser ultrasonic generation technique has been investigated which 

uses a spatial mask in a manner similar to that which may be employed for 

generation of narrowband, tone burst ultrasound. Instead of periodic spatial 

modulation at the surface of a test object, however, the mask employed for this 

technique is linearly frequency modulated as a function of position and 

correspondingly generates ultrasonic wave packets which are linearly frequency 

modulated (FM) as a function of time (chirped). Although the chirped mask 

launches an ultrasonic wave packet which is extended in time, not unlike an 

ultrasonic tone burst, the nature of the chirped signal is such that once detected, it 
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can be processed by a matched filter algorithm which generates a single narrow 

spike corresponding to the time of arrival of the wave packet. 

Pulse compression techniques were originally developed to overcome 

system power limitations in radar applications.18'19'20'21 These same concepts have 

been used in the field of ultrasonic NDT. Conventional contact piezoelectric 

systems using pulse compression methods such as linear FM22, random noise2, 

and Barker and Golay codes24,25 have been demonstrated. Pulse compression 

techniques have also been successfully applied to electromagnetic-acoustic 

transducer (EMAT) systems.26 More recently, ultrasonic pulse compression has 

been applied to medical imaging systems.27,28 In all of the above applications, the 

use of pulse coding techniques provides a means of circumventing peak power 

limitations in the transducer (or in the system under inspection) while mamtaining 

high temporal resolution and signal-to-noise ratio (SNR). In the present work, the 

use of linear FM pulse compression is extended to laser ultrasonic NDT where 

sensitivity issues are often a major obstacle limiting the use of such systems in 

practical NDT applications. Furthermore, the power limitation (ablation 

threshold) encountered in the laser ultrasonic generation can be quite severe as it 

is dictated by the thermal and optical properties of the material under inspection. 

Thus the use of linear FM, as well as other pulse compression techniques, may 

provide a means of extending the range of laser ultrasonic systems to cases where 

low ablation threshold and poor sensitivity may have proven prohibitive. 

3.3      Theory 

In filtering surface wave data, considerations include signal to noise ratio 

as well as extraction of useful information, such as arrival time and amplitude, 

from the signals arriving at the detection point. For many applications, it is not 
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necessary that the shape of the waveform be preserved in the filtering process as 

long as amplitude and time-of-flight information can be extracted from the 

filtered signals. Taking this into account the signal-to-noise ratio (SNR) that is to 

be maximized at some (arbitrary) instant in time (tj may be given as: 

<%>' 
So(tJ 
n*(t) 

(3.1) 

where s0(%J is the maximum signal amplitude and n^t) is the mean squared noise 

amplitude. If the noise is white, as would be the case for a shot noise limited 

interferometric detection system, the SNR can be maximized using a matched 

filter.29 The output of a matched filter is obtained by cross-correlating the 

received signal with the generated signal. The maximum SNR is given as 

_2E/ 
~   7N„ 

(3.2) 

where E is the total signal energy and N^ is the noise spectral density. 

In the laser ultrasonic generation case, the energy in the acoustic 

waveform is proportional to the incident laser energy.4 When generating surface 

waves with a Q-switched laser pulse, the surface wave frequency content is 

determined primarily by the spot size of the generation pulse. A small spot size 

will give rise to a high frequency surface wave while a broad generation spot will 

give rise to a low frequency surface wave. Thus to achieve high resolution and 

SNR, the energy in the incident pulse could be increased and focused to a sharp 

point or line. Unfortunately, the energy density of the input pulse is limited, 

though, by the ablation threshold of the material. One scheme to circumvent this 
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difficulty is to distribute the generating pulse over a large area on the surface of a 

specimen. This allows for generation to remain in the thermoelastic regime while 

at the same time increasing the total energy in the acoustic signal, and thus 

increasing the SNR. In order to distribute the laser energy over a large area and 

still maintain good signal resolution, the energy can be modulated over the extent 

of the illuminated region. 

Narrowband surface waves have been obtained by illuminating the 

specimen with a sinusoidal intensity pattern with the generation laser.11"14 When 

using narrowband signals in a matched filter arrangement, the output of the 

matched filter consists of a sinusoidal signal of twice the duration of the input 

signal and modulated by a triangular envelope. The use of narrowband 

generation has drawbacks in that ambiguities exist at multiples of the signal 

period (at the sidelobes) and difficulties arise when detecting multiple signals in 

cases where the correlation envelopes overlap. These problems can be overcome 

by using pulse coding techniques, examples of which include the use of amplitude 

or frequency modulated signals, or pseudo random signals.18"28 By imposing these 

pulse compression techniques, the effective bandwidth of the signal is increased 

and the width of the envelope of the signal, after matched filtering, is decreased. 

Linear frequency modulation (FM) signals have been used extensively in 

radar and ultrasonics applications. Such signals are especially useful in cases 

where a short duration, high energy pulse cannot be generated or transmitted. The 

signal energy may then be distributed over a large period of time and then be 

compressed into a short pulse, after reception, with a matched filter system. In the 

laser ultrasonics case, this consists of generating a FM surface wave pulse train 

with a spatially broad laser source and, after interferometric detection, 

compressing the wave train into a sharp spike through matched filtering. The 

general expression for a linear FM pulse is given by: 
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W(t) = cos[(B0t+bt2] 

(3.3) 

This produces a chirp pulse in which the angular frequency is linearly 

swept from o0 to co0+2bT, where T is the temporal pulse duration and 2b is the 

linear frequency sweep rate. The pulse width obtained after match filtering a 

linear FM pulse is inversely proportional to the FM pulse bandwidth, bT/n. 

3.4      System Description 

The experimental configuration is shown in Figure 3-1. To generate a 

linear FM acoustic wave, a transmission mask was placed near the surface of the 

specimen and was illuminated with an expanded beam from a pulsed Nd:YAG 

source. The mask was constructed by taking the desired linear FM waveform (Eq. 

3.2) as a template and then thresholding about the zero value. The resulting mask 

is shown in the lower left hand corner of Figure3-1. The dimensions of the 

active area of the mask are 1.1cm wide by 2.5 cm long. The incident laser pulse 

was expanded to over 1.1cm in diameter in an attempt to achieve relatively 

uniform illumination over the entire width of the mask. The laser pulse width was 

13ns and the total energy transmitted by the mask was 30mJ (approximately 25% 

of the laser energy incident on the mask). The laser pulse energy was low enough 

to ensure that generation took place in the thermoelastic regime. All surface 

waves were generated on an aluminum specimen with multiple surface wave 

arrivals corresponding to reflections off of the edges. The acoustic waves were 

detected using a path-stabilized skewed Michelson interferometer. The 

waveforms were transferred to a personal computer for digital filtering. 
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03 

3 o 

Transmission Mask 

Figure 3-1 Experimental setup for the generation of FM surface waves. The transmission 

mask is shown in the lower right hand comer. 

3.5      Results and Discussion 

This technique launches acoustic waves that are very similar in form to 

the linear FM template, as is shown in Figure 3-2a comparing the theoretical 

chirped signal to an experimental chirped surface wave which was signal 

averaged 100 times. The pulse compression obtained from the experimental and 

the theoretical FM waveform are in good agreement as is illustrated in Figure 3- 

2b. Note that although the theoretical and experimental waveforms have some 
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slight differences, the pulse compression achieved with the experimental signal is 

sufficient to prove that this technique performs adequately. A typical single shot 
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Figure 3-2 Comparison of a) theoretical and experimental chirped surface waves and b) 

the compressed waveforms after autocorrelation. 
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Time (us) 

Figure 3-3 a) Single shot FM surface waveform and b) the waveform after matched 

filtering showing a 15-fold increase in signal to noise ratio and compression of 

the wave packet. 
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signal waveform using a linear FM mask is shown in Figure 3-3a. This signal 

was then processed using a matched filter based upon the template linear FM 

waveform. The resulting output is shown in Figure 3-3b. An apparent 15-fold 

increase in SNR (based on Eq. 2.1) is observed in the filtered waveform. 

3.5.1   Resolution Enhancement 

Analogous to the radar case, it becomes difficult to resolve distinct pulses 

in the output of a matched filter if the pulses are separated by less than the full 

width half maximum (FWHM) of their envelopes. In the narrow band case, the 

envelope function is given by:19 

t     , i 
1-7 .H<T 

(3.4) 

where T is the duration of the pulse train. 

In the linear FM case, the envelope is given by: 

sw(bt) 
bt -? M<T 

(3.5) 

As can be seen from the functional forms, the FWHM of the narrow band 

case is T and the FWHM of the linear FM case is Ti/bT. The linear FM signal 
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essentially 'compresses' the envelope of the narrowband signal by a factor of 

hin. 

The benefits of this compression effect are apparent in Figure 3-4. Figure 

3-4a shows a single shot ultrasonic signal containing two overlapping linear FM 

signals in noise. Figure 3-4b shows the result of using a linear FM matched filter. 

In this case, the compression of the envelopes allows the two signals to be easily 

resolved. Figure 3-4c shows a single shot ultrasonic signal composed of two 

overlapping narrow band signals in noise. Figure 3-4d shows the output of a 

matched filter based on a noise free signal. Here, the width of the envelopes 

poses a problem in resolving the individual signals. 

3.5.2   Directionality 

Using the mask, a FM array of line sources generates a corresponding FM 

acoustic pulse train. Considering the surface wave directivity for a line source, 

large amplitude surface waves are generated perpendicular to illuminating lines.30 

These two FM pulse trains are phased reversed. Using a matched filter, the 

received signal can be correlated with a forward or reversed chirp signal. The 

acoustic signal launched to the left of the mask is phase reversed from that 

emitted to the right and thus will only correlate with a reversed chirp (see Figure 

3-1). This concept is illustrated in Figure 3-5. Figure 3-5a shows the single shot 

data. Figure 3-5b shows the correlation with the forward chirp, with the peaks 

corresponding to surface waves originally launched to the right of the mask. 

Figure 3-5c shows the correlation with the reverse chirp, with the peaks 

corresponding to surface waves originally launched to the left of the mask. Note 

that in Figure 3-5c there is some noise corresponding to a degree of correlation 

between the reverse chirp and the large amplitude surface wave pulse train 
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originally launched to the right of the mask, but the broad nature of this noise (it 

is not compressed) allows it to be distinguished from the other arrivals. The 

(c) 

n 1 1 1 r 
2       3       4       5       6 

Time (us) 

Time (us) 

Figure 3-4 Overlapping FM and narrowband surface wave packets (a,c). Matched filtering 

allows for resolution of individual arrivals in the chirped case (b) but not in the 

narrowband case (d). 
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asymmetry of the chirp pulse can prove useful when, for example, locating a 

crack when several arrivals are present. 

3.6      Conclusions 

A new technique has been presented which allows for greater temporal 

resolution and enhanced detectability of laser generated surface waves. The laser 

energy is spread over an area of the surface allowing for more laser energy to be 

used in the generation of acoustic waves while remaining in the thermoelastic 

regime. Spatial frequency modulation of the laser source over the illuminated 

region allows for the compression of the generated surface wave packet upon 

reception by matched filtering. Matched filtering gives the maximum SNR 

possible in the white noise case. The filtered FM surface wave signals showed a 

15-fold increase in SNR over the unfiltered waveforms. The advantages of using 

a FM technique over a narrowband generation process, such as increased ability 

to resolve overlapping signals, have been discussed and experimentally verified. 

The transmission mask used to generate the FM pulse train was placed in 

close proximity to the specimen. In practical inspection systems, where remote 

generation of surface waves is required, other means of producing a FM intensity 

distribution on the surface of the component to be inspected may be utilized. The 

transmission mask may be imaged onto the surface of the specimen using a 

simple imaging system. A binary phase grating, similar to that previously 

employed for narrowband surface wave generation,11 may also be employed for 

the same purpose. 
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CHAPTER 4 

Temporal Modulation of Laser Sources 

4.1      Introduction 

In this chapter, the dependence of laser generated acoustic waves on the 

temporal extent of the laser source will be evaluated. It is assumed that laser 

generation takes place in the thermoelastic regime. If surface vaporization is to 

be avoided, the generating pulse must not heat the surface beyond the 

vaporization threshold temperature. This controls the amount of energy that may 

be absorbed at the specimen surface and limits the amplitude of the acoustic 

waves that may be generated. One method of circumventing this problem is to 

alter the temporal profile of the incident radiation. This technique has been 

successful in a number of cases reported in the literature. Temporal modulation of 

laser sources has been achieved through repetitive Q-switching of a Nd:YAG 

laser1, mode locking of a long cavity Nd:YAG laser2, a White cell optical delay 

line arrangement3, and the use of an array of laser sources.4,5 Temporal 

modulation through optical fiber delay line arrangements has also been 

demonstrated.6,7 The primary benefit of temporal modulation is that it allows for 

more energy to be coupled to the specimen before the vaporization temperature is 

reached. The spatial and temporal distribution of this acoustic energy can be 

optimized in several ways. First, the modulation of laser sources at a single point 

allows for the concentration of this energy into a narrow frequency band to which 
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the detection systems can be tuned and sensitivity increased. Next, if spatial and 

temporal modulation are possible, the sources may be arranged such that 

superposition of the acoustic waves occurs at the detection point. 

Laser ultrasonic system sensitivity enhancement has been demonstrated 

using the temporal modulation techniques mentioned above. The present work 

first considers the effects of modifying the pulse length from a single laser source 

on the generation of acoustic waves. The problem of controlling the pulse length 

of a Q-switched laser is addressed. Pulse length effects in homogeneous, 

isotropic, materials can be determined theoretically through analysis of the 

thermal and acoustic processes involved. In complex materials systems, the 

prediction of pulse length effects may be complicated by elastic and thermal 

anisotropy. A linear systems model is presented which simplifies the prediction of 

temporal modulation effects in these materials, and may prove useful in the 

design of laser ultrasonic systems for specific applications. 

4.2      Controlling Laser Pulse Length 

Commercial Q-switched Nd:YAG laser systems generally have fixed 

pulse lengths in the 5-30 ns range. In order to adjust this, the dependence of the 

pulse length on various laser cavity parameters must be found. Q-switching can 

be modeled using coupled rate equations:8 

ox 

dz 

(4.1) 
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where r\ is the ratio of the cavity photon density to the threshold photon 

population inversion density, ß is the ratio of the population inversion to the 

threshold inversion, and x is a dimensionless time variable given by: 

c(l-R)t 
T» — — 

(4.2) 

where L is the cavity length, c is the speed of light, and R is the output coupler 

reflectivity. 

Through numerical solution of these rate equations, the output laser pulse 

shape can be estimated, and its dependence on cavity parameters evaluated. In 

general, there are two ways of increasing the pulse length in a given Q-switched 

laser system. The first is to increase the photon lifetime in the cavity. The photon 

lifetime is a characteristic time constant which describes the decay of optical 

radiation in the laser cavity and is given by: 

T 
t    =-«■ 

t    c(l-R) 

(4.3) 

Increasing the photon lifetime essentially traps the light in the laser cavity, 

spreading the light out in time. From Eq. (4.3), this can be accomplished through 

either lengthening the laser cavity or increasing the reflectivity of the output 

coupler. The second method of increasing the pulse length is by decreasing the 

laser pump energy. This broadens the laser pulse by allowing stimulated emission 

to occur over a longer period of time. The effects of increasing cavity length, 

increasing output coupler reflectivity, and decreasing pump rate were found 
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Figure 4-1 Effects of varying laser cavity length, pumping rate, and output coupler 

reflectivity. All of the changes indicated lead to a lengthening of the laser 

pulse. 

through a numerical solution of the rate equations and are illustrated in Figure 4- 

1. All of these effects can be readily used to control the output pulse length of a 

given laser system. 

Experiments with a Lasermetrics Q-switched Nd:YAG laser system have 

shown that the pulse length of this system could be controlled through adjustment 

of the pump energy and laser cavity length. The pulse length could be adjusted 

from about 10ns to over 200ns. Controlling the pump energy was the easiest 

method of controlling pulse width. Unfortunately, decreasing the laser pump 

energy results in a decrease in the energy of the output pulse. In order to ensure 
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adequate energy in the output pulse, the cavity length or output coupler 

reflectivity may have to be adjusted in conjunction with the pump energy. 

4.3      Pulse Length Effects on Surface Heating 

For thermoelastic generation of acoustic waves, there exists some 

temperature (T^J which the sample surface is to be kept below. For a given 

generation laser pulse length (t,,), this limits the maximum amount of energy 

(EmaJ that may be absorbed at the sample surface. At present, the case of a 

strongly absorbing surface will be considered. The three dimensional solution of 

the heat equation for a spatially Gaussian laser source (surface absorber) with an 

arbitrary time dependence is given by:9 

Gaussian ™-  r~      J   i—.. . t.      "^ KVJi        £"(4Kt1+d2) 4Ktj    4ict1+d2 

(4.4) 

where F^is the absorbed power per unit area at the center of the Gaussian spot, K 

is the thermal diffusivity, K is the thermal conductivity, and d is the beam radius. 

This solution does not take into account the temperature dependence of the 

thermal and optical properties of the material which may be substantial (as 

discussed in Chapter 2), but nevertheless gives a reasonable approximation for 

pulse length effects. 

It is assumed that the pulse length is adjusted through the variation of laser 

cavity parameters. Eq. (4.4) was solved with the pulse shape p(t) calculated 

through the laser rate equations. The pulse length was increased, in the numerical 
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routine, by increasing the laser cavity length. Figure 4-2 shows the relative 

amount of energy absorption needed to raise the surface to the maximum 

allowable temperature, T,,^, as a function of pulse length. The spot size was taken 

as 2.5mm and the calculation was performed using the thermal properties of 

aluminum. Figure 4-2 illustrates a square-root dependence of Emax on the pulse 

length. 

Typically, the laser spot sizes used for the generation of ultrasound are 

significantly large such that radial diffusion of heat from the generation spot can 

be ignored. If the surface temperature is evaluated over an extended period of 

time or if the laser spot size is very small, then the three dimensional heat 

conduction problem must be considered. In the cases presented below, the laser 

spot size is sufficiently larger than the thermal diffusion length and the 

assumption of one dimensional heating holds. 

If one dimensional heating is assumed, the relationship between Emax and 

tp can be easily found. Consider the case of one-dimensional heating of a half 

space by a constant amplitude laser pulse. The solution to this problem is given as 

follows: 

(4.5) 

where I is the incident laser pulse power density and a is the absorption 

coefficient. With strong surface absorption, as is the case in metals, a approaches 

infinity and this expression reduces to: 

T 2lVid 
1 surface KVJt 
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(4.6) 

50 100 150 

Pulse Lengh (ns) 
250 

Figure 4-2 Relative amount of absorbed laser energy needed to raise the surface 

temperature to T^as a function of pulse length. 

Eq. (4.6) shows explicitly the dependence of surface temperature on heating time. 

The relation between E^and tp is expressed as follows: 

max        A/   p 

(4.7) 

The simple result given in Eq. (4.7) provides the incentive for pulse length 

consideration in the generation of ultrasound. The amount of laser energy that 

may be absorbed by a material   without causing damage can be increased by 
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increasing the laser pulse length. This, in turn, should increase the energy in the 

acoustic signal generated. 

4.4      Pulse Length Effects on the Generation of Acoustic Waves 

The frequency content of laser generated ultrasonic signals (in the absence 

of material dependent losses) is determined, to a large extent, by the temporal 

frequency content of the incident laser pulse, the spatial frequency content of the 

generation spot, the source-receiver geometry, and the optical absorption depth. 

For strongly absorbing materials, the influence of the optical absorption depth on 

the frequency content of the acoustic signal is negligible. This leaves the temporal 

and spatial frequency content of the generation pulse and the source-receiver 

geometry to be evaluated. 

For discussion purposes, a characteristic time constant describing the 

spatial extent of the source and the source-receiver geometry will be introduced. 

The geometry under consideration is illustrated in Figure 4-3. In this 

configuration, d. is the difference in propagation distance from the center of the 

laser spot and the Gaussian radius of the laser spot to the detection point. The 

characteristic spatial time constant (t.) is given by: 

c„ 

ds =d2 -d, = Vh2 +(d + r)2 -Vh2 +d2 (48) 

where cm is the acoustic velocity of the mode under consideration. Considering 

bulk wave generation, Eq. (4.8) gives characteristic spatial time constants for 
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Generation pulse 

detection point 

Figure 4-3 Definition of source-receiver geometry. 

surface, longitudinal, and shear waves. 

The results of Section 4.3 indicated that longer pulses should permit more 

energy absorption by the specimen before T,^ is reached. The energy in the 

resulting acoustic waves is also expected to increase. The amplitude of the 

acoustic waves generated, though, depends on the relationship between the 

characteristic spatial time constant t, and the laser pulse temporal width tp. There 

are two limiting cases of interest which will be discussed. 

If ts»tp, then the frequency content of the generated signal is controlled 

by the spatial extent of the source. In this case, broadening the laser pulse should 

have little effect on the shape of resulting the acoustic wave. An increase in 

acoustic wave amplitude directly proportional to the increase in absorbed energy 

should be observed. In general, from the relationship between absorbed energy 
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and pulse width, and in the limit t.»tp, the expected amplitude gain (g) through 

pulse length increase is given by: 

(4.9) 

where tp2 and ^ are the pulse widths of the longer and shorter pulse respectively. 

In the other limit, if ts«tp, the expected behavior is quite different. In this 

case, the frequency content of the generated signal is controlled by the temporal 

extent of the laser source. For a given laser spot size, the amplitude profile of the 

generated acoustic signals will follow the temporal power profile of the incident 

laser pulse. For a constant spot size and pulse width, this leads to the linear 

relationship between absorbed energy and acoustic wave amplitude observed in 

the thermoelastic regime. Increasing the laser pulse width, at constant energy, 

leads to a proportional decrease in peak power. The maximum absorbed energy 

Emax shows a square root dependence on pulse length and cannot offset the 

decrease in peak power, which has a linear dependence on pulse length. This is 

illustrated in Figure 4-4 showing the peak power in the incident laser pulse as a 

function of pulse length. It is expected that the amplitude of acoustic waves 

generated in the limit ts«tp will show an effective amplitude gain of: 

(4.10) 
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Figure 4-4 Relative peak power in laser pulse needed to raise the surface temperature to 

T^as a function of pulse length. 

In this limit, Eq. (4.10) is found to be the reciprocal of Eq. (4.9) and predicts an 

amplitude decrease with increasing pulse length. 

Equations (4.9) and (4.10) predict the effects of increasing the laser pulse 

length on the laser generation of acoustic waves in the thermoelastic regime in 

two limiting cases. In the general case, the behavior is expected to fall somewhere 

between these two conditions with Eq. (4.9) giving the maximum possible gain 

and Eq. (4.10) indicating the greatest loss. As mentioned in Chapter 2, 

thermoelastic generation of ultrasound has been extensively modeled.10'11'12'13 The 

predictions of Eqs. (4.9) and (4.10) will now be evaluated using the model for 

acoustic wave generation in the thermoelastic regime described in Chapter 2 and 

adapted from that of Spicer.12 This program has shown excellent agreement with 

experiment.12 The model was run for a 6mm thick aluminum specimen with the 

detection point 3mm off of epicenter. The incident laser spot size was 2mm. The 
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displacement was calculated as a function of incident laser energy and the 

allowed energy then scaled according to Eq. (4.7). Figure 4-5 shows a plot of 

maximum longitudinal wave amplitude versus pulse length. The functional 

dependencies given by Eqs. (4.9) and (4.10) are over-plotted for comparison. 

The behavior of the thermoelastic generation model subject to the input 

energy constraints of Eq. (4.7) agrees well with the predicted trends. The 

disagreement at the longer pulse lengths is most likely caused by the influence of 

a negative-going displacement which occurs after the arrival of the longitudinal 

wave. This becomes superimposed on the longitudinal wave arrival when the 

laser pulse length is substantially broadened. For short laser pulses, the pulse 

shape is dictated mostly by the spatial extent of the laser source. In this region, an 

increase 
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Figure 4-5 Relative longitudinal wave amplitude possible in thermoelastic regime without 

exceeding Tmax as a function of pulse length. 
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in longitudinal wave amplitude proportional to (tp)05 is seen. For longer laser 

pulses, the pulse shape is dictated by the temporal extent of the source and a 

decrease in signal amplitude proportional to l/(tp)05 is observed. The first 

longitudinal arrivals in the two outlined regimes are illustrated in Figure 4-6. 

Figure 4-6a shows a comparison of predicted displacements with 10 and 20ns 

pulses and illustrates that, although there is some broadening, the width of the 

arrival does not increase substantially. The amplitude gain when going from a 10 

to a 20 ns pulse is 1.36 which compares favorably with the 1.41 predicted by Eq. 

(4.9). Figure 4-6b shows a comparison of longitudinal arrivals from 100ns and 

200ns pulses. In this case, the temporal extent of the arrival is dictated mainly by 

the input laser pulse length. The broadening of the longitudinal wave arrival 

directly follows that of the incident laser pulse. A decrease in amplitude is seen 

with increasing pulse length, with the longitudinal wave generated with the 200 

ns pulse reduced by a factor of 0.713. This again compares very well with the 

predicted 0.707 through Eq. (4.10). 

Figure 4-5 indicates that there is an optimal laser pulse length for acoustic 

wave generation in a given experimental arrangement. For the particular case 

treated, a pulse length of about 60ns allowed for optimization of the longitudinal 

wave amplitude. A gain of approximately 1.8 is seen over the longitudinal wave 

generated with a 10ns pulse. Curves analogous to Figure 4-5 can be produced for 

longitudinal, shear, and surface wave generation. 

4.5      Linear Systems Approach to Pulse Length Effects 

The thermoelastic generation model used is computationally intensive and 

the calculation of pulse length effects on the generation of all of the acoustic 
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Figure 4-6 Comparison of longitudinal wave displacement as pulse length is varied a) in 

the regime ^»t,, and b) in the regime t,«tp. 

318 



113 

modes, in a number of experimental configurations, can prove quite time 

intensive. As such, a significantly faster and easily applied technique for 

predicting acoustic waves generated by temporally modulated laser sources will 

be presented. 

The thermoelastic generation of ultrasound can be modeled as a linear 

system. The excellent agreement of theory and experiment given in the literature 

has shown that linear equations are sufficient, in most cases, for describing the 

process. If greater accuracy is required, the temperature dependence of the 

thermal and optical properties may need to be taken into account, resulting in the 

breakdown of the linear assumption. In the approach taken here, it is assumed that 

the entire process is linear. 

The premise is quite simple. At the shortest incident laser pulse length of 

interest, a single reference signal is either theoretically calculated or 

experimentally measured. Although the impulse response is not known, this 

signal provides enough information to give an exact solution for calculation of the 

displacement for any arbitrary laser intensity modulation on the surface, so long 

as the frequency content of the modulated pulse does not exceed the frequency 

content of the reference pulse. This provides an extremely useful tool for the 

evaluation of pulse length effects, as well as other temporal modulation schemes 

of interest. This technique can be used to analyze the response of composite 

materials and other complex systems to temporal modulation of the generation 

pulse based solely on experimental data acquired with conventional Q-switched 

laser systems. 

Let s(t) be the reference pulse used to generate the reference signal r(t). 

The transfer function h(t) describing the material response (as well as the 

response of the detection system) may be found through the deconvolution of: 
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r(t) = s(t)*h(t) 

(4.11) 

The frequency spectrum of s(t) is finite and thus the 

material/instrumentation response is only determined over the spectral range of 

this pulse. From this information, the material/instrumentation response to an 

arbitrary input laser pulse, k(t), can be determined, as long as the spectral range of 

k(t) falls within the spectral range of s(t). For smooth laser pulses of similar 

shape, this generally means that the pulse width of k(t) is greater than that of s(t). 

Let m(t) be the theoretical ultrasonic response to generation with k(t). The 

following relation holds: 

m(t) = k(t)*h(t) 

(4.12) 

Using Eqs. (4.11) and (4.12), the ultrasonic signal generated in a material by an 

arbitrary laser pulse k(t) can be predicted through the relation: 

m(t) = F-i{M(f)}=F-i|^^j 

(4.13) 

Equation (4.13) is valid as long as all other parameters, including spot 

size, source location, and receiver location are held constant. This provides a 

method for evaluating pulse modulation techniques for various applications which 

is very easy to implement and computationally very fast. 
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A comparison between the linear systems approach and the predictions of 

the thermoelastic generation model was performed with the results given in 

Figure 4-7. The same geometry was used as was given in the previous Section 

£ 

2 
-0.01 

-0.02 
03 1.0 1.1 

time(|js) 

Figure 4-7 Comparison of longitudinal wave displacement from 20ns. Incident laser pulse 

calculated through thermoelastic generation model and linear systems model. 

(calculation of Figure 4-5) with the reference pulse taken as a 10ns pulse and the 

reference signal calculated through the model. The material response to a 20 ns 

pulse is calculated using the linear systems approach and compared to the 

waveform calculated with the model. Agreement is excellent, with approximately 

1% error in the amplitude prediction. 

In another case, the reference signal was calculated using a 10ns pulse and 

the linear systems approach was used to determine pulse length effects on surface 

wave generation in aluminum. The surface is not allowed to heat above T^ and 
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the spot size used in the calculation was 1.5mm. The maximum surface wave 

amplitude is plotted as a function of laser pulse length in Figure 4-8. The 

functional dependence predicted by Eqs. (4.9) and (4.10) is again over-plotted for 

comparison. The peak surface wave amplitude occurs at about 125ns. This gives 

an amplitude gain of about 2.7 over the surface wave generated with a 10ns pulse. 

The surface waves generated by 10ns and 125ns pulses are shown in Figure 4-9a. 

These waveforms have been scaled to equal amplitude in Figure 4-9b for easy 

comparison of the temporal extent of the signals. The increase in incident laser 

pulse width, in this case, does not cause significant broadening of the signals. The 

surface wave generated by the 125 ns is shifted later in time because the time 

coordinate is centered on the start of the pulse, rather than the peak It is apparent 

that the frequency content of these signals is dictated mainly by the laser pulse 

spot size, rather than the temporal extent of the generation pulse. 
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Figure 4-8 Surface wave amplitude as a function of pulse length. Calculation performed 

for case where surface is not heated above T—-. 
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Figure 4-9 a) Calculated surface wave amplitude form 10ns pulse and 125ns pulse and b) 

amplitudes have been scaled for analysis of temporal extent. 

4.6       Linear Systems Approach to Laser Generation in Composites 

One of the advantages of the linear systems approach is that the effects of 

pulse length modification can be evaluated without solving the elastic wave 

equations for wave propagation in the media of interest. This is particularly useful 

in composite materials, where the wave propagation problem is complicated by 

anisotropy. Pulse length effects have been evaluated in graphite-PEEK and 

graphite-epoxy specimens. It order to check the linearity of the laser ultrasonic 

generation process, an experimental check of the linear systems approach was 

performed. A reference signal was generated on epicenter with an 86 ns laser 

source. The material response to a 211ns pulse was then calculated using Eq. 

(4.13) and compared to the experimentally measured waveform at 211 ns. The 

time((js) 
4 6 

time(ps) 
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Figure 4-10 Verification of linear systems approach with epicentral waveforms in a 

graphite-PEEK sample, a) reference waveform taken with a 86ns pulse and b) 

predicted (top) and experimental (bottom) waveform from 210ns pulse. 

pulse length of the Nd: YAG laser was controlled by adjusting the cavity length 

and pumping rate. Other experimental parameters, including spot size, pulse 

energy, and source-receiver geometry, were held constant at each pulse length. 

The results of this experiment are presented in Figure 4-10. The linear systems 

technique is seen to agree well with experiment, indicating that the assumption of 

linearity holds reasonably well in this material. 

Figure 4-11 shows epicentral waveforms taken at two different locations 

on the graphite-PEEK specimen. The signal generated with a 1 Ins laser source is 

taken as the reference signal. The response to 100 and 178ns laser pulses are 

predicted through the linear systems technique. The difference in the signals 

observed at the two locations illustrates the inhomogeneous character of the 

specimen. The two cases also show different responses to the longer laser pulses. 

The waveform in Figure 4-1 la shows little change when the pulse length is 

increased, while that in Figure 4-1 lb shows a marked decrease in the amplitude 

of the high frequency features. 

The signals in Figures 4-10 and 4-11 were calculated using constant 

energy in the incident laser pulses, and spreading that energy out in time as the 

pulse length was increased. This information needs to be augmented by the 

relation between pulse length (tp) and damage threshold energy (E^. The 

graphite-polymer specimens have a very complex structure, making predictions 

based on analytical solution difficult. The relationship between threshold energy 

and pulse width was thus determined experimentally through surface inspection 

under an optical microscope. The onset of visible damage was monitored as the 

pulse length was increased, at constant energy, from 10ns to 200ns. There was no 
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detectable change in the damage threshold over this pulse length range for either 

the graphite-PEEK or graphite-epoxy specimens. 

a) -1 

time(fis) 

time ((is) 

Figure 4-11 Epicentral waveforms on two regions of graphite-PEEK sample. The 11ns 

waveforms were taken experimentally and the longer pulse waveforms were 

predicted using linear systems theory. 

The fact that no change in Emax was observed indicates pulse lengthening is 

not an effective method of increasing the amplitude of acoustic waves generated 
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in these materials. The energy E^ is simply spread out in time as the pulse 

length is increased. This leads to either little change in waveform shape (Figure 4- 

11a) or a decrease in the amplitude of high frequency features (Figure 4-1 lb), 

depending on the frequency content of the reference signal. 

The results on the composite specimens indicate that the thermal diffusion 

length is small compared to the spatial extent of the illuminated region. The 

square-root dependence of Emax on tp given in Eq. (4.7) holds only for the case of 

strong surface absorption. If the absorption coefficient is small compared to the 

thermal diffusion length, then the approximate dependence of E,,,^ on pulse 

length can be found through evaluation of Eq. (4.5). The exponential terms are 

first expanded, and Eq. (4.5) is approximated by: 

T^-^-^+sr?+«2^-^"fci-x2w 

(4.14) 

Neglecting higher order terms in a, Eq. (4.14) can be further approximated as: 

T       -IaKt 

surface ~     -wr 

(4.15) 

Equation (4.15) states that, as a gets very small with respect to the thermal 

diffusion length, there is no means by which heat can escape from the illuminated 

volume. The terms Iat define the energy input from the laser source in units of 

J/cm3. This energy heats the specimen according to the specific heat of the 

illuminated material (K/K = 1/pC). In this limit, the temperature of the volume is 
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only a function of the total amount of energy absorbed, and not a function of how 

this energy is distributed in time. This is one possible explanation for the behavior 

observed in the composite specimens. 

This explanation does not account for the specific interaction of the 

incident laser light with the graphite-polymer composites. Most polymers are 

weak absorbers of visible and near IR laser radiation. It has been shown that, 

when generating with a Nd: YAG laser in a graphite-epoxy specimen, a significant 

portion of the laser energy is absorbed by the graphite fibers.14 If the laser 

induced damage mechanism originates in the fibers, or at the fiber-matrix 

interface through heating of the fibers, then the present results suggest that heat 

flow in the fibers was not sufficient to remove heat from the illuminated volume 

during the nanosecond time-scale of the incident laser pulse. The damage 

mechanism in graphite-epoxy and graphite-PEEK polymers has not been 

quantified. Optical microscopy of laser damaged regions, though, indicates that 

the polymer matrix material is vaporized first and bare graphite fibers are left at 

the surface. 

4.7      Signal Processing Considerations 

The primary issue of increasing laser ultrasonic system sensitivity depends 

not only on the amplitude of acoustic signals generated, but also on the energy in 

these signals. This was discussed in detail in Chapter 3. When the SNR is 

maximized through match filtering, the result does not depend on signal 

amplitude, but instead on total signal energy. Increasing the incident laser pulse 

length can prove useful, even if the amplitude of the acoustic signal generated 

with the longer laser pulse is not enhanced. One problem, though, is that in the 

limit as t.«tp the acoustic signal is broadened in direct proportion to the incident 
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laser pulse. This broadening of the acoustic signals limits the temporal resolution 

of the laser ultrasonic system. 

A chirp technique, analogous to that presented in Chapter 3, has recently 

been presented.15 In this method, though, the incident laser pulse is frequency 

modulated in time rather than in space. Temporal modulation techniques such as 

this may prove very useful in increasing the sensitivity of laser ultrasonic 

systems. The linear systems approach for deterniining the acoustic response as a 

function of the incident laser pulse shape provides a straightforward method for 

evaluation of temporal modulation methods. As an example, the effects of 

generating ultrasound with a linearly frequency modulated laser source will be 

presented. The reference signal is taken as a surface wave calculated with the 

thermoelastic model. The same input parameters as given in Section 4.6 are used 

for the calculation. The reference laser pulse shape is given in Figure 4-12a. The 

goal is to determine the response to the linearly frequency modulated (FM) signal 

presented in Figure 4-12b, under the constraint that each pulse heats the surface to 

the same temperature, T,^. The signals shown in Figure 4-12 have been 

normalized such that the total energy in the pulses is equal. Heating curves for the 

two pulses, having the same amount of total energy, are presented in Figures 4- 

13aand4-13b. 
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Figure 4-12        Relative amplitude and spatial extent of the incident laser pulses considered 

showing a) the 10ns pulse and b) the FM pulse. 

a) b) 

Figure 4-13 Relative surface heating produced by a) 10ns pulse and b) FM pulse. 

1X10 125 

linefjs) TimeGs) 

a) b) 

Figure 4-14        Relative surface displacement produced by a) 10ns pulse and b) FM pulse 

when surface temperature T,,,« is reached. 

The surface heating was calculated through numerical integration of Eq. (4.4) 

with the functional dependence of each laser pulse included as p(t). It can be seen 
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that the reference laser pulse heats the surface to a temperature about 10.5 times 

higher than the FM pulse. This allows 10.5 times more energy to be used for 

acoustic wave generation using the FM laser pulse. 

The reference waveform is given in Figure 4-14a and the material 

response to the FM pulse, as calculated using linear systems theory, is given in 

Figure 4-14b. It can be seen that, even with 10.5 times more energy, the 

amplitude of the FM generated acoustic wave is still well below that of the 

reference pulse signal. The energy is also spread out substantially in time. 

The signal processing methodology to be used is identical to that given in 

Chapter 3. It is assumed that the SNR is maximized using a matched filter. For 

the case of a perfect matched filter on a noise free signal, this amounts to an 

autocorrelation of each of the waveforms in Figure 4-14. The resulting signals are 

presented in Figure 4-15. The amplitude of the correlation peak is approximately 

4 times higher for the FM signal over that of the short pulse illustrating the 

increase in SNR possible. The FM waveform also shows the effects of pulse 

compression. Frequency modulation of the generation laser pulse allows for an 

increase in SNR without the sacrificing the temporal resolution of the detection 

system. 
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Figure 4-15 Correlation peaks produced through match filtering of the acoustic signal 

generated by the FM pulse (top) and the 10ns pulse (bottom). 

The linear systems technique presented for analysis of the effects of 

temporally modulating the incident laser light in the generation of acoustic waves 

is relatively easy to implement. It may prove useful in the optimization of a given 

laser ultrasonic generation scheme. The same methodology can be used to 

evaluate any arbitrary generation laser pulse shape, including the effects of 

generating ultrasound with multiple pulses as well as sinusoidal modulation 

techniques. 
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APPENDIX! 

Implicit Finite Difference Solution to Melting and Vaporization Problem 
Occurring in Vacuum. Physical Constants set up for Calculation in Aluminum 

# include <math.h> 
# include <stdio.h> 
#include <stddef.h> 
#include <stdlib.h> 
#include <malloc.h> 

void main () 

{ 

double *allocate_double_vector (int l,int y); 
void free_double_vector (double *v, int 1); 
int i, j, m, q, cnt, n, tot, melting, numl, starter, ji, run; 
double c, p, I, a, dt, dz, II, 12, cp, L, K2, stl, st2, ds, gs, powerl; 
double beta, po, A, RO, Ts, Hv,Tlv, density, flux,f luxl, totflux, vsurface, Rl; 
double cvsurface, dsurface, totsurface, enout, marker, pressure; 
double ll.Tm, Rf, II1,112,121,122,123, kip; 
char string[80]; char string2[80]; 
double expulsion, expdist, totexpul, power, IA, CT; 
double *TP, *s, *u, *z, *R, *b, *Q, *STP, *k, *ka, *kb; 
FILE *lp, *mp, *np; 

lp=fopen("aluml 50.dat","w"); 

STP=allocate_double_vector(l,5100); 
TP=allocate_double_vector( 1,5100); 
s=allocate_double_vector(l,5100); 
u=allocate_double_vector(l ,5100); 
z=allocate_double_vector( 1,5100); 
R=allocate_double_vector(l ,5100); 
Q=allocate_double_vector(l ,5100); 
b=allocate_double_vector( 1,5100); 
k=allocate_double_vector(l ,5100); 
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ka=allocate_double_vector( 1,5100); 
kb=allocate_double_vector( 1,5100); 

I* INITIALIZE VARIOUS VALUES TO ZERO */ 

totexpul=0.0;expulsion=0.0;starter= 1 ;nm=0;totsurface=0.0; 
enout=0.0;marker=0.0; kip=0.0; pressure=0.0; 

/* INPUT POWER DENSITY AND OUTPUT FILE NAMES */ 

printf("Enter the power density in MW/cm2: "); 
scanf("%lf',&power); 
printf("\n"); 
printf("The power density is %lf\n",power); 
prinrf("\n"); 

printf("Enter the ablation file name with no spaces:"); 
cscanf("%s", string); 
printf("\n"); 

printf("Enter the thermal file name with no spaces:"); 
cscanf("%s", string2); 
printf("\n"); 
printf ("The name of the ablation file is:%s\n",string); 
printf("\n"); 
printf ("The name of the thermal file is:%s\n",string2); 
mp=fopen (string2,"w"); 
np=fopen (string, "w"); 

I* PHYSICAL CONSTANTS */ 

a=1.0e6; /* 1/CM ABSORPTION DEPTH */ 

power=(power*le6); /* CONVERT POWER DENSITY MW/CM2 */ 

ds=0.0; /* INITIAL MOVEMENT OF MELT FRONT */ 

ll=2e-5; /* THICKNESS (CM> DIMENSIONLESS LENGTH CONSTANT 
DZ (ACTUAL)= (DZ)(L1) */ 

dz=.03; I* DIMENSIONLESS SPACE STEP */ 

Tm=933.0; /*MELTING TEMPERATURE */ 

L=(10790/26.98)*2.69;  I* LATENT HEAT J/CM3 */ 

K2=.23061106el; /»DIMENSIONLESS CONSTANT W/CMK */ 

melting=0; I* MELTING=1.0 WHEN MELT FRONT STARTS TO PROPAGATE */ 

stl=0.0; st2=0.0; /* TWO VARIABLES FOR DEFINING POSITION OF MELT FRONT */ 
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dt=.03; /* DIMENSIONLESS TIME STEPS */ 

tot=1300; /* TOTAL NUMBER OF SPACE STEPS */ 

m=1300; /* NUMBER OF SPACE STEPS BEFORE MELT FRONT */ 

n=tot-m; I* NUMBER OF SPACE STEPS AFTER MELT FRONT */ 

cnt=0; /* COUNTER FOR WRITE TO FILE */ 

/* CONSTANTS FOR VAPORIZATION CALCULATION */ 

A=26.98; /* ATOMIC WEIGHT g/mol */ 

po=.001*1.013e8; /* AMBIENT PRESSURE g/(sec2 m) */ 

Rl=8.314e3; /* GAS CONSTANT (UNITS) g m2/(sec2 mol K) */ 

Tlv= 1785.0; /* VAPORIZATION TEMPERATURE K */ 

beta=1.0; /* COUPLING CONSTANT */ 

density=2.69*100*100*100; /* g/m3 */ 

Hv=293430.0; /* LATENT HEAT J/mol */ 

R0=8.314; /* GAS CONSTANT (UNITS) J/ mol K */ 

I* INITIAL TEMPERATURE DISTRIBUTION (corresponds to 300K)*/ 

for(i=l;i<=tot+100;i++) {TP[i]=(--684800);} 

/* J GIVES TOTAL NUMBER OF TIME STEPS */ 

for (j=ly<=20000y'-H-){ 

n=tot-(m+1); /* n= number of space steps behind front */ 

/* TERMS FOR HEAT EQUATION */ 

for(i=l;i<=tot+5;i-H-) { 
if (TP[i]>0.0) /* melt properties */ 

{ 
CT=TP[i]*Tm+Tm; 

k[i]=.54976+5.24994e-4*CT1.33889e-7*CT*CT 
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+7.94112e-12*CT*CT*CT; /* J/cmKs */ 
cp=(7.59*4.184/26.98)*2.69; /* J/cm3K */ 

} 

else /* solid properties */ 
{ 

CT=TP[i]*Tm+Tm; 
cp=3.72883+0.01057*CT-1.48277e-5*CT*CT 
+9.14297e-9*CT*CT*CT;/* J/cm3K */ 
cp=(cp*4.184/26.98)*2.69; 
k[i]=2.28706; 

} 

Q[i]=(k[i]*L)/(cp*Tm*K2); 
R[i]=Q[i]*dt/(dz*dz); 

if 0=1) { 
for(i=l;i<=tot+4;i++) { 

ka[i]=1.0; 
kb[i]=1.0; 
}} 

I* weighting fhc, not used- very small variation of 
K spatially at every time step. approx=l*/ 

/* REFLECTIVITY */ 

if (TP[1]X>.0) {Rf=.80;} else {Rf=.80;} 

/* BOUNDRY CONDITION- FRONT SURFACE */ 

s[l]=(1.0/6.0-R[l]+5.0/3.(>+2.0*R[l])/Q[l]; 

u[l]=((1.0/6.0-R[2])/Q[2])/s[l]; 

/* INTERNAL NODES */ 

for (q=2;q<=m-l;q++){ 

b[q]=(1.0/6.0-R[q-l])/Q[q-l]; 

s[q]=(5.0/3.(H-2.0*R[q])/Q[q]-b[q]*u[q-l]; 
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u[q]=((1.0/6.0-R[q+l])/Q[q+l])/s[q]; 
} 

/* MELT FRONT -LEFT SIDE- BOUNDARY CONDITION */ 

if(melting=l){ 

b[m]=1.0/(3.0*Q[m-l]*(2.(H-stl))-2.0*dt/(dz*dz*(2.(>+st2)); 

s[m]=2.0/Q[m]-1.0/(3.0*Q[m]*(l.(H-stl)>+(2.0*dt)/(dz*dz*(l.(Hst2))-b[m]*u[m-l]; 

} 

/* BACK SURFACE BOUNDARY CONDITION */ 

else { 

b[m]=(l-0/6.0-R[m-l])/Q[m-l]; 

s[m]=((l-0/6.0-R[m]+5.0/3.0+2.0*R[m])/Q[m]>b[m]*u[m-l]; 

} 

cnt=cnt+l; if (cnt==45) {cnt=0;}   /* Counter-write to file when counter = 0 */ 

/* LASER SOURCE FIRST LAYER */ 

gs=(G*dt*L*ll*ll)/(Tm*K2>25e-9)/6.0e-9* /*9.6 for 16ns pulse (FWHM) */ 
(Ö*dt*L*ll*ll)/(Tm*K2>25e-9)/6.0e-9; 
I=power*exp(-1.0*gs); 
Il=(1.0-Rf)*I*exp(-1.0*(0.0)*(a*dz*ll)); 
I2=(Il*(l-0-exp(-a*dz*ll))*2.0*dt*ll*ll)/(k[l]*dz*Tm*ll); 

/* SOURCE TERM FOR FRONT SURFACE*/ 

if(melting=l){ 
z[lH((L0/6.(Hka[l]*R[l]+5.0/3.0-2.0*R[l])/Q[l])*TP[l] 
+((1.0/6.(Hkb[l]*R[2})/Q[2])*TP[2]+I2-enout)/s[l];} 

else f 
z[l]=(((1.0/6.OH-ka[l]*R[l]+5.0/3.0-2.0*R[l])/Q[l])*TP[l] 
+((1.0/6.0+kb[l]*R[2])/Q[2])*TP[2]+I2)/s[l];} 

I* CALCULATE TEMPERATURE FOR INTERNAL NODES */ 

for(i=2;i<=m;i-H-) { 
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gs=((j*dt*L*ll*ll)/(Tm*K2)-25e-9)/6.0e-9* 
((j*dt*L*ll*ll)/(Tm*K2)-25e-9)/6.0e-9; 
I=power*exp(-l .0*gs); 
Il=(1.0-Rf)*I*exp(-1.0*(i-l)*(a*dz*ll)); 
I2=(Il*(1.0-exp(-a*dz*ll))*2.0*dt*ll*ll)/(k[i]*dz*Tm*ll); 

/* BOUNDRY CONDITION - FIRST MELT BOUNDARY */ 

if (i=m) { if (melting=l){ 
z[i]= (TP[i-l]*(1.0/(3*Q[i-l]*(2+stl))+ 
(2*dt)/(dz*dz*(2.0+stl)))+TP[i]* 
(2.0/Q[i]-l/(3*Q[i]*(l+stl)>2.0*dt/ 
(dz*dz*(1.0+stl)))+I2-b[i]*z[i-l])/s[i]; 

} 

else { 

z[i]=(((l-0/6.(H-R[i])/Q[i])*TP[i]+((5.0/3.0-2.0*R[i])/Q[i])*TP[i] 
+((1.0/6.0+R[i-l])/Q[i-l])*TP[i-l]-b[i]*z[i-l]+I2)/s[i]; 

} 

else{ 
z[i]=(((1.0/6.0+ka[i]*R[i+l])/Q[i+l])*TPti+l]+ 
((5.0/3.0-2.0*R[i])/Q[i])*TP[i]+((1.0/6.0+kb[i]*R[i-l])/Q[i-l]) 
*TP[i-l]-b[i]*z[i-l]+I2)/s[i]; 

} 

} 

/* COMPLETE ALGORITHM -SOLVE FOR TEMPERATURE AT ALL NODES*/ 

TP[m]=z[m]; 

for(i=m-l;i>=l;i-){TP[i]=z[i]-u[i]*TP[i+l];} 

/* CALCULATION BEHIND THE MELT FRONT */ 

if(melting=l){ 

/* BOUNDARY CONDITION- BEHIND MELT FRONT */ 
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s[l]=2.0/Q[l+(m+l)]-1.0/(3.0*Q[l+(m+l)]*(1.0-stl))+2.0*dt/(dz*dz*(1.0-st2)); 

u[l]=(1.0/(3.0*Q[2+(m+l)]*(2.0-stl)>2.0*dt/(dz*dz*(2.0-st2)))/s[l]; 

/* INTERNAL NODES */ 

for(q=2;q<=n-l;q++){ 

b[q]=(1.0/6.0-R[q-l+(m+l)])/Q[q-l+(m+l)]; 

s[q]=(5.0/3.0+2.0*R[q+(m+l)])/Q[q+(m+l)]-b[q]*u[q-l]; 

u[q]=((1.0/6.0-R[q+l+(m+l)])/Q[q+l+(m+l)])/s[q]; 

} 

/* BACK SURFACE BOUNDARY CONDITION */ 

b[n]=(l-0/6.0-R[n-l+(m+l)])/Q[n-l+(m+l)]; 

s[n]=((1.0/6.0-R[n+(m+l)]+5.0/3.0+2.0*R[n+(m+l)])/Q[n+(m+l)])-b[n]*u[n-l]; 

/* LASER SOURCE- BACK OF MELT FRONT */ 

gs=((J*dt*L*ll*ll)/(Tm*K2)-25e-9)/6.0e-9* 
(Ö*dt*L*ll*ll)/(Tm*K2>25e-9)/6.0e-9; 
I=power*exp(-1.0*gs); 
Il=(l-0-Rf)*I*exp(-(m+l)*a*dz); 
I2=(Il*(1.0-exp(-a*dz*ll))*dt*2.0*Il*ll)/(Tm*k[l+m+l]*dz*ll); 

/* SOURCE TERM AT BACK MELT BOUNDARY*/ 

z[l]=(TP[2+(m+l)]*(1.0/(3*Q[2+(m+l)]*(2-stl))+2*dt/(dz*dz*(2.0-stl))H 
TP[l+(m+l)]*(2.0/Q[l+(m+l)]-l/(3*Q[l+(m+l)]*(l-stl)> 
2.0*dt/(dz*dz*(1.0-stl)))+I2)/s[l]; 

I* CALCULATE TEMPERATURE FOR INTERNAL NODES */ 

for(i=2;i<=n;i++) { 

gs=(Ö*dt*L*ll*ll)/(Tm*K2)-25e-9)/6.0e-9* 
(G*dt*L*ll*ll)/(Tm*K2>25e-9)/6.0e-9; 
I=power*exp(-l .0*gs); 
Il=(1.0-Rf)*I*exp(-1.0*(i-l+(m+l))*(a*dz*ll)); 
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I2=(n*(l-0-exp(-a*d2*ll))*2.0*dt*ll*ll)/(k[i+m+l]*dz*Tm*ll); 

if (i=n) { 
z[i]=(((1.0/6.0+R[i+(m+l)])/Q[i+(m+l)])*TP[i+(m+l)]+ 
((5.0/3.0-2.0*R[i+(m+l)])/Q[i+(m+l)])*TP[i+(m+l)] 
+((1.0/6.0+R[i-l+(m+l)])/Q[i-l+(m+l)]) 
*TP[i-l+(m+l)]-b[i]*z[i-l]+I2)/s[i];} 

else{ 

z[i]=(((1.0/6.O4-ka[i+m+l]*Rti+l+(m+l)])/Q[i+l+(m+l)])*TP[i+l+(m+l)]+ 
((5.0/3.0-2.0*R[i+(m+l)])/Q[i+(m+l)])*TP[i+(m+l)]+((1.0/6.0+ 
kb[i+m+l]*R[i-l+(m+l)])/Q[i-l+(m+l)])*TP[i-l+(m+l)]-b[i]*z[i-l]+I2)/sti];} 

} 

/* COMPLETE ALGORITHM- CALCULATE TEMPERATURE AT ALL NODES BEHIND 
MELT*/ 

TP[n+(m+l)]=z[n]; 

for(i=n-l;i>=l;i-){TP[i+(m+l)]=z[i]-u[i]*TP[i+H-(m+l)];} 

/* CALCULATE NEW TEMPERATURE AT NODE CLOSEST TO MELT FRONT */ 

gs=((J*dt*L*Il*ll)/(Tm*K2>25e-9)/6.0e-9* 
((j*dt*L*ll*ll)/(Tm*K2)-25e-9)/6.0e-9; 
I=power*exp(-1.0*gs); 
Il=(1.0-Rf)*I*exp(-1.0*(m+l-l)*(a*dz*ll)); 
I2=(Il*(1.0-exp(-a*dz*ll))*2.0*dt*ll*ll)/(k[m+l]*dz*Tm*ll); 

TP[m+l]=(((1.0/6.0+ka[m+l]*R[m+2])/Q[m+2])*STP[m+2]+ 
((5.0/3.0-2.0*R[m+l])/Q[m+l])*STP[m+l] 
■K(1.0/6.0+kb[m+l]*R[m])/Q[m])*STP[m] 
+I2-((1.0/6.0-ka[m+l]*R[m+2])/Q[m+2])*TP[m+2]- 
((1.0/6.0-kb[m+l]*R[m])/Q[m])*TP[m])*Q[m+l]/(5.0/3.0+2.0*R[m+l]); 

/* CALCULATE HOW FAR MELT FRONT MOVES */ 

ds=(dt*k[m+2])/(2.0*dz*K2)*(TP[m+2]*((2.0-st2)/(1.0-st2))- 
TP[m+3]*((1.0-st2)/(2.0-st2)>fSTP[m+2]*((2.0-stl)/(1.0-stl))- 
STP[m+3]*((1.0-stl)/(2.0-stl)))+(dt*k[m])/(2.0*dz*K2)*(TP[m]*((2.0+st2)/(1.0+st2))- 
TP[m-l]*((1.0+st2)/(2.(Hst2))+STP[m]*((2.^ 

/* CALCULATE WHERE THE NEW MELT FRONT POSITION LIES */ 

if(fabs(stl*dz+ds)<=(dz/2.0))       { 
stl=(stl*dz+ds)/dz; 
st2=(stl *dz+2.0*ds)/dz; 
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} 

else { 
if(stl*dz+ds>dz/2){ 

numl=(int)( ((stl*dz+ds)-dz/2)/dz); 
m=m+(numl+l); 
if(m==4){starter=2;} 
stl=(-(numl+l)*dz+(stl*dz+ds))/dz; 
st2=(-(numl+l)*dz+(stl*dz+2.0*ds))/dz; 

} 

else { 
numl=(int)( (fabs(stl*dz+ds)-dz/2)/dz); 
m=m-(numl+l); 
stl=((numl+l)*dz+(stl*dz+ds))/dz; 
st2=((numl+l)*dz+(stl*dz+2.0*ds))/dz; 
if(starter=l) {m=2;stl=st2=0.0;} 
else if(m==l){meltijQg=2; m=tot;} 

} 

} 

Ts=TP[l]*Tm+Tm; /* REAL SURFACE TEMPERATURE */ 

flux= beta*po/(pow(2.0*3.1415*A*R1 *Ts,.5)); 

fluxl=exp((Hv*(Ts-Tlv))/(RO*Ts*Tlv)); 

pressure=(po/1000.0)*fluxl; /* SATURATED VAPOR PRESSURE */ 

I* CALCULATE VAPORIZATION BOUNDARY MOVEMENT DUE TO EXPULSION */ 

expulsion=((m*6e-9)*2.0/260e-6)*pow((po*flvixl)/density,.5)*100.0 
*((L*ll)/(Tm*K2)); 
expdist=expulsion*dt; 
totexpul=totexpul+expdist; 

/* CALCULATE VAPORIZATION FRONT MOVEMENT FROM SURFACE 
VAPORIZATION */ 

totflux=flux*fluxl; 
vsurface= ((totflux*A)/density)* 100.0; /* velocity in cm/sec */ 
cvsurface= (vsurface)*((L*ll)/(Tm*K2)); /* convert to dimless velocity */ 
dsurface=cvsurface*dt; 

/* Total distance vaporation interface has moved-dimless */ 
totsurface=totsurface+dsurface+expdist; 
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marker=markeri-dsurface; /* tracks surface vaporization only */ 

/* CALCULATE ENERGY REMOVED FROM FIRST NODE- USED IN VAPORIZATION 
PROCESS */ 

if(((TP[l]*Tm+Tm)-Tlv)>=0.0){ 

enout=vsurface*((293430.0+10790.0)/26.98)*2.69+ 
vsurface*((5.82*4.184/26.98)*2.69)*((TP[l]*Tm+Tm)-300.0); 

} 
else {enout=0.0;} 

/* TRACK ENERGY LOST AND CONVERT TO FORM TO BE INPUT BACK INTO 
PROGRAM */ 

powerl=enout; 
enout=(enout*((2.0*dt*ll*ll)/(k[l]*dz*Tm*ll))); I* adjust units */ 

/♦ERROR CHECK*/ 

if (totsurface>=dz) { 
totsurface=(totsurface-dz); 
for (i=l;i<=tot;i++){ TP[i]=TP[i+l];} 
if (totsurface>=dz) { printf("error in evaporation routine");} 
m=ra-l; 
nm=nm+l; 
} 

if(TP[l]*Tm+Tm>=Tlv){kip=TP[l]*Tm+Tm-Tlv;} 
else {kip=0.0;} 

} /* END OF PROCESSES OCCURRING IN THE MELT */ 

I* SAVE PREVIOUS TEMPERATURE VALUES IN ARRAY */ 

for(i=l;i<=tot;i++) {STP[i]=TP[i];} 

/* CHECK FOR MELT FRONT PROPAGATION - MELT FRONT STARTED NODE NEXT 
TO BOUNDARY TO AVOID CALCULATION OF THERMAL GRADIENTS AT 
BOUNDARY */ 

if (TP[2]>=0.0&&melting=0) {melting= 1 ;m=3;} 

/* PRINT RESULTS TO FILE WHEN COUNTER INDICATES */ 
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if(cnt=0){ 

printf("%1.4e     %lf       %i        %e        %1.4e\n",(j*dt*L*ll*ll)/ 
(Tm*K2),TP[l]*Tm+Tm,m,pressure,marker*U); 

fprintf(lp,"%1.4e%1.4e   %i %1.4e   %1.4e   %1.4e\n",(j*dt*L*ll*ll)/ 
(Tm*K2),TP[l]*Tm+Tm,m*6,pressure,totexpul*ll,marker*ll); 

fprintf(mp,"%1.4e\n",I-powerl); I* output energy balance at surface */ 

fprintf(np,"%1.4e\n'',pressure); /* output pressure exerted on surface */ 

} 

} 

free_double_vector(TP, 1); 
free_double_vector(s,l); 

free_double_vector(z, 1); 
free_double_vector(u, 1); 

free_double_vector(Q, 1); 
free_double_vector(R, 1); 

free_double_vector(b, 1); 
free_double_vector(k, 1); 

/* Subroutines */ 

void system_error(cliar error_message[]) 
{ 

void exit(int); 

printf("%s",error_message); 
exit(l); 

} 

void free_double_vector(double *v, int 1) 

{ 
/* Frees  a real vector of range [l..u]. */ 

free((char*) (v+1)); 

} 
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double *allocate_double_yector(int 1, int u) 
{ 

/* Allocates a real vector of range [l..u]. */ 

void system_error(char *); 
double *p; 

p=(double *)calloc((unsigped) (u-l+l),sizeof(double)); 
if (!p) system_error("Failure in allocate_real_vector()."); 
return p-1; 
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